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Abstract 

The purposes of this research were: (1) the modeling of a CID situation and (2) 

the search for robust and controllable input variable settings.  The inputs were defined as 

controllable and noise variables and the confusion matrices in ROC theory were adapted 

to act as controllable factors.  In this research a simple virtual battlespace representation 

is employed.  The experimental results of the CID system are summarized by a posterior 

confusion matrix and throughout the confusion matrix analysis we can obtain all various 

types of data such as accuracy, error cost, error rates, and so forth.  To find the optimal 

parameters three evaluation techniques were applied: (1) Linearly constrained discrete 

optimization, (2) Taguchi’s S|N ratio method and (3) Robust parameter design with a 

combined array.  The results are compared and contrasted across different objective 

functions. 

In conclusion, if we consider the diverse characteristics of CID, the simulator 

needs to focus on finding the controllable parameter that yields the maximum accuracy 

value.  This is because the minimum cost is typically accomplished at the point of 

maximum accuracy and the cost approach is very subjective depending on the decision 

maker and battlefield situation.  In addition, the most preferable evaluation method is 

RPD with a combined array due to its superior performance outside of the design space.  

In the final analysis, we need a detector/classifier that has good performance to minimize 

error costs and maximize label accuracy.   
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I.  Introduction 
 
 

Background 

There is a phrase in The Art of War, written by Sun Tzu in 600BC: “So it is said 

that if you know your enemies and know yourself, you will fight without danger in battles.  

If you only know yourself, but not your opponent, you may win or may lose.  If you know 

neither yourself nor your enemy, you will always endanger yourself.”  In Sun Tzu’s view, 

the goal of war is not only to win but also to win without friendly casualties.  What do we 

need to accomplish his thought?   

There is another expression in the book of Morals and Conduct, written by Ibn 

Hazm of Codorva (994-1064): “The measure of prudence and resolution is to know a 

friend from an enemy; the height of stupidity and weakness is not to know an enemy from 

a friend”.  In addition to Sun Tzu’s suggestion, Ibn Hazm emphasizes an identification 

friend from enemy and enemy from friend.  The kind of information on an enemy can be 

very diverse but the most important information that we have to get is knowledge of the 

position of both the enemy and the friendly force.  We usually use radar and 

communication skills to confirm the location of a friendly force and to classify 

characteristics between enemy and friendly forces.  However, in thinking about the real 
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battlefield situation, we cannot be sure whether the required information is always 

available or not.   

On 10 August 2006, in an interview in Secretary Rumsfeld’s office, the Secretary 

said, “I was asked that when I was up at the confirmation hearings in January of ‘01, and 

I said intelligence.  And if you think about this department, we have just enormous 

capability to finish.  If you use the phrase “find, fix and finish,” we can finish something 

if we can find it and fix it in time and location.  The problem is finding it.” [1].  Obviously, 

there is a difference between identification and location but if we think about the 

procedure of location, it has to include the entire identification process.   

Successful Combat Identification (CID) is an essential factor to achieve various 

objectives in combat.  For example, a detection of an enemy target to destroy it and the 

classification of a friendly force to avoid fratricide in the complex battlefield can be 

achieved by a successful CID process.  A good method to increase confidence in CID is 

iterative CID processing.  This is based on accumulated information about the ROI.  One 

of the ways to assess iterative running of the new CID process is simulation.  According 

to Law and Kelton, simulation is a “useful and powerful tool” to aid in “evaluating 

military systems.” 

Research Problem 
 

In the fall of 1994, a DoD Combat CID Study was formed at the request of Dr. 

Paul Kaminski to do a Department wide review of CID.  And this study was completed 

by the summer of 1995 [2].  The Defense Science Board Task Force concluded that there 

was no crisis in CID calling for extraordinary action and suggested the maintaining of 

current CID budgets and activities [2:45-47].  After the Task Force’s report, CID has 
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been investigated considerably, especially with respect to ATR.  The study of the ATR 

model has been conducted by Dr. Bauer and his students at AFIT.  But we desire a full 

process model of CID including ATR.  Therefore the model in this research may be 

among the first attempts at CID simulation.  Due to this first trial of CID simulation, there 

is an absence in the literature in regard to CID simulation.  Thus it is necessary to start 

this research from the study of ATR and we expect to see connections between the 

previous ATR system and this research.   

Research Objective 

In this paper we first need to construct a general, basic and reliable CID model 

such a model does not exist.  To make the CID model, we use several assumptions such 

as predetermined ROC curves, the number of enemies and so forth.  In addition, we try to 

get the robust parameter settings that minimize cost and maximize label accuracy by 

employing several techniques: (1) Linearly constrained discrete optimization (LCDO), 

(2) Taguchi’s S|N ratio method with a crossed array design, and (3) Robust parameter 

design (RPD) with a combined array.  After modeling and evaluation, we will examine 

our results through confirmation experiments and consider their strengths and weaknesses.   

Scope 

 In exploring the question of CID simulation, this paper will mainly deal with 

fundamental CID modeling and its evaluation technique.  It is not within the scope of this 

study to outline CID in its entirety and it may be impossible since CID itself has many 

uncertainties and depends on the battlefield situation.  Thus, in this research we focus on 

constructing a CID simulation and motivating further research.   
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Overview 

 The next four Chapters provide detailed information and descriptions of this 

research.  Chapter II summarizes the literature relating directly to this research.  Chapter 

III explains the CID model established for this research and outlines the methodology 

used to perform the problem discussed in Section 1 and Section 2.  Chapter IV presents 

the description of experiments and the results of the analysis.  Chapter V provides the 

author’s conclusions and recommendations for future research.   
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II.  Literature Review 

 
 

Overview of Department of Defense Modeling and Simulation Pyramid 
 

Modeling and Simulation (M&S) is defined as “The process of designing a 

model of a system and conducting experiments with this model for the purpose either of 

understanding the behavior of the system or of evaluating various strategies for the 

operation of the system” [3].  There are many reasons why a system is modeled by 

computer simulation.  For example, a specific system may be too expensive or dangerous 

to use in the real world, the system may not exist, or the system may have inherent 

variability that causes very messy or completely intractable analysis of its processes.  

Especially, it would be unethical and inhuman to start real combat merely to test a new 

weapon system.   

A model of a real system is a representation of some of the components of the 

system and of some of their actions and interrelationships that are useful for describing or 

predicting the behavior of the system [5: Sec I, 1].  The goal in the design of combat 

models is to represent warfare as appropriately and accurately as possible, because results 

from combat simulation can lead to national defense determinations.   

Model Hierarchy 

Within the field of DoD M&S, Combat models are classified into a multi-tiered or 

hierarchical family of models.  This categorization is described as a pyramid, with higher 

resolution combat models involved with a small-scale of battle at the lowest position and 

large-scale of combat models at the highest position.   
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Figure 1: DoD M&S Pyramid [20] 

At the bottom are the Engineering models, which describe or determine individual 

characteristics of systems.  An example of this would be the accuracy of the given sensor 

with a particular condition of weather.  At the second level of the pyramid are the single 

Engagement level models, which determine performance of systems against adversary 

systems.  These models are used at the operational level with rule sets controlling the 

behavior of systems within simulation.  An instance of this would be a missile fly-out 

model.  Next on the way up the pyramid are the Mission level models, which move from 

single-unit engagement to multiple-unit engagement, e.g., a F-16 flying a Suppression of 

Enemy Air Defenses (SEAD) mission, or a squadron of F-16s flying SEAD against an 

Integrated Air Defense System (IADS).  At the top of the pyramid are the campaign level 

models, which involve a lot of different systems.  They are simulated with low resolution 

and high aggregation due to many entities and their interactions.  In general, the 

aggregation decreases as one moves down the pyramid, and resolution increases as one 

moves down, but sometimes this is not true.  By aggregation it is meant that each entity is 
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not simulated but is replaced by probabilities and percentages.  The primary model used 

in this research effort, CID, is primarily an engagement and mission level model, and will 

be described in detail later in this literature review.   

Description of CID Mission 

Definition 

CID is the process of attaining an accurate characterization of entities in a 

combatant’s area of responsibility to the extent that high-confidence, real-time 

application of tactical options and weapon resources can occur.  The objective of CID is 

to maximize combat/mission effectiveness while reducing total casualties due to enemy 

action and fratricide [5:1].   

Importance of Effective CID 

According to the Report of the Defense Science Board Task Force on CID (May 

1996), effective CID is critical for achieving improved operational effectiveness and 

reducing fratricide.  Fratricide may not determine the result of conflicts in the foreseeable 

future; however, casualties due to fratricide are considered much less acceptable than 

those caused by enemy attack.  Furthermore, fratricide has crucial side effects such as 

discouraging morale, potential loss of confidence due to a fear of fratricide and loss of 

public support.  Figure 2 shows how correct or incorrect CID can affect the outcome of a 

conflict.  If an object is hostile, but not ID’ed as hostile, and therefore the Blue force does 

not destroy it, the Blue force’s ships and crews may be lost and perhaps worse, eventually 
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wars are lost.  Further, if the object is friendly or neutral and the Blue force destroys it 

due to a false ID, then lives are lost and wars may be started. 

 
Figure 2: Importance of Effective CID [6:4] 

CID is, in fact, a complex requirement for the armed services to accomplish the 

objectives of each case.  In order to maximize the efficiency of weapons on the 

asymmetric battlefield while protecting friendly forces, warfighters must use a 

combination of on-board Cooperative and Non-cooperative Identification systems, along 

with Tactics, Techniques, and Procedures (TTP) that maximize systems’ capabilities.   

Figure 3 shows why CID processes have to be important in the battlefield.  The 

CID process is located in the middle of the engagement process; it means consistent 

development in CID is essential to progress the engagement process.  Figure 3 also 

explains that CID is beneficial in combat for even more than preventing fratricide.  In 
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effect, early development of CID was for battle management purposes so that the military 

commander could control and intentionally plan and execute the battle with good 

knowledge of his forces [2:4].   

 

Figure 3: The Target Engagement Process [2:4] 

Outline of the CID Process 

The major stages of the CID process are: Detection, Cooperative Identification, 

Non-cooperative Identification (ATR), Fusion, Decision and Firing.  If one envisions the 

battle field as a grid over which blue/red/neutral targets and clutters have been placed, 

then the Blue force performs a sequential CID cycle as follows: 

• Examines each grid element for detections 

• Assigns Cooperative labels to indicated grid points 
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• Turns on the ATR system and makes Non-cooperative assignments to all 

detections and fuses everything (There may be a secondary sensor 

somewhere doing similar things) 

• Decides whether to shoot at a detected and classified target based on the 

indication of the two sensors (see figure 4.) 

 
Figure 4: Characterizing CID Process [7] 

 

Different Kinds of CID Scenarios 

Air to Ground (A/G) [8] 

An A/G CID architecture is a conceptual System of Systems capability that 

accurately characterizes entities in a combatant’s area of responsibility to the extent that 
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high confidence, real-time application of tactical options and weapon resources can 

occur.  To accurately characterize entities, the A/G CID architecture is comprised of three 

types of platforms: a Forward Air-Controller (FAC), A/G shooters, and A/G surveillance.  

The FAC is assumed to be a ground FAC, the A/G shooter is a fixed-wing (FW) aircraft, 

and the A/G surveillance is provided by an Off-board or Unmanned Aerial Vehicle 

(UAV).  Each platform can incorporate Cooperative and non-cooperative systems to 

identify ground targets.  To pass information between all nodes, the CID architecture 

requires data networks.  A fusion algorithm is also an important element of the CID 

architecture because it combines ID information from various sources into a single ID 

declaration.  This architecture is depicted in figure 5.   

 

Figure 5: A/G CID Architecture [9] 

A typical A/G target ID scenario is comprised of a complex picture of the 

battlespace where there exists lots of clutter, and as such, the set of ID possibilities are 

immense.  Due to the infancy of the problem, the analysis tools that currently exist are 

immature.  There are also no well-deployed Cooperative ID systems and there are 
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virtually no non-cooperative ID systems.  In a typical A/G mission, the warfighter knows 

(to some level) the target ID and the approximate target location.  Additionally, the 

warfighter is loaded with the appropriate munitions and is knowledgeable in the rules of 

engagement (ROE) [10].  The warfighter can safely accomplish his/her mission if timely 

and accurate CID information is provided.  The highest priority of the ground target 

issues that are of interest in CID are locating, detecting, and correlating an already 

identified hostile target.  Cooperative ID solutions provide limited utility and will only 

help in certain missions such as Combat Air Support (CAS), Combat Search and Rescue 

(CSAR), and Special Operations missions, but these missions amount to less than 15% of 

all Air Force (AF) missions flown [10].  Also, Cooperative ID can only identify some 

friends, but cannot identify the enemy or neutrals.  The value of non-cooperative ID is 

that it can provide target ‘characterizations’ needed to accomplish any mission.  Unlike 

Cooperative ID, non-cooperative ID can identify friends, enemies, and neutrals.   
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Air to Air (A/A) [8] 

 
Figure 6: Typical A/A target ID Scenario [10] 

A typical A/A target ID scenario is comprised of a cleaner picture of the 

battlespace where there is less background clutter.  Unlike the A/G scenario, the set of ID 

possibilities are significantly smaller.  The A/A CID scenario has long been in the minds 

of the decision makers and thus has relatively mature analysis tools.  In the A/A scenario, 

Cooperative ID technology forms the foundation of a family of systems; there exist 

numerous non-cooperative systems.  One of the air target issues that are being considered 

is the use of off-board ID information.  This has proven to be the toughest challenge 

when attempting to use off-board ID information for weapons/tactical decisions.  The use 

of off-board ID information requires high positional accuracy due to correlation issues 

and data latency must be provided within a few seconds of the event it is needed.  The 

second A/A issue is improving Cooperative ID.  Just because Cooperative ID is 

improved, this does not directly equate to dramatically improved mission effectiveness.  

A slight mission effectiveness benefit is gained only when almost all friendly air targets 

possess and utilize the Cooperative ID system.  The next issue is improving non-
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cooperative ID, this dramatically increases mission effectiveness.  It helps warfighter 

make launch decisions at desired employment ranges if performance conditions (ranges, 

declaration rates, confidence rates) are good enough.  Finally, preventing losses and 

preventing fratricide are other A/A key issues always in consideration.  Non-cooperative 

systems do as much, if not more, than cooperative systems.   

Modeling Architecture 

Type of Modeling [4: Sec I, 6] 

In a typical combat model the user must initialize the input variables of the model, 

execute the model to obtain output and analyze the output.  There are three basic 

approaches to gathering a solution from a symbolic model: the analytic, numeric, and 

simulation model approaches.  When one constructs a new model, the desired model 

approach will have a major impact on the structure of the resulting model.   

Analytic Model 

An analytic model consists of an explicit mathematical formula for each of the 

output variables written as a function of only the input variables [4: Sec I, 6].  Analytic 

models are desirable because the relationship between inputs and outputs is displayed as 

an explicit and hopefully simple formula [4: Sec I, 6].  Since the model solution is an 

explicit algebraic formula, the sensitivity of the model outputs to input variations can be 

analyzed symbolically by taking partial derivatives [4: Sec I, 6].   

The article, Quantifying “Persistence” in the Context of Find-Fix-Finish (FFF), 

which is written by Roy E. Rice would be an example of an analytic model of CID 
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modeling.  The concept of “persistence” is a powerful enabler in ongoing operations, 

particularly in the context of a series of events often described as the “kill chain”; that is 

“find-fix-finish”(FFF) [11].  The author states that analysts are asked to show which part 

of the “kill chain” should be invested in more than the others.  As an example, if one 

country invests in a new ISR (Intelligence, Surveillance, and Reconnaissance) capability, 

his ability to “find” targets will be improved.  However, if the country invests in a new 

hypersonic munition, the time required to “finish” targets will be faster than before.  Due 

to above reasons the author thought an analytic construct is needed to examine trade 

spaces.  He first derived an equation for the probability of accomplishing the kill chain – 

PFFF(T) then he quantified the drivers of this probability.  He also added the development 

of “Persistence ratio” to quantify the relative impacts of persistent ISR, some results, and 

insights.  The general expression for PFFF(T) is 

 

/

( ) 1
( )

T

FFF j
j ii j

e
P T

θ

θ θ

−

≠

⎢ ⎥⎣ ⎦= −
−∑ ∏

[11].   (2.1) 

T = time window, iθ  = mean-time-to event 

As one can see, the model is described as an explicit formula.   

Numeric Model [4: Sec I, 6-7] 

A numeric model solution of an analytic model is obtained by first assigning 

numeric values to the input variables and then using the rules of mathematics to solve for 

numeric values of the output variables.  Numeric model are possible for some models that 

cannot be solved in analytic closed form or where analytic models are possible but the 

output solutions are very complicated.  Numeric model outputs restrictively allow 
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analysts to estimate the model’s response to other input scenarios.  The partial derivatives 

of the model outputs can be estimated by numeric finite difference approximations.  A 

good instance of such a model for which numeric solutions are beneficial is a linear 

program.  Analytic formulas can show some of the characteristics of linear programming.   

Simulation Model [4: Sec I, 7]  

A simulation model solution is obtained by sequentially acting out the processes 

and interactions of the model.  Simulation models are particularly appropriate for models 

whose relationships are expressed procedurally instead of algebraically.  Simulation is the 

solution method that can best deal with complex, dynamic, high resolution models of 

force-on-force combat.   

The output from a deterministic simulation model that does not contain 

probabilities or random effects will have the same form as the output from a numeric 

solution – a numeric value for each output variable.  Sensitivity analysis or alternate 

scenarios will require that the simulation be replicated with some of the inputs changed. 

The output from a stochastic simulation model which incorporates uncertain 

occurrences using probability distributions will be a single realization of the simulation as 

result of random variables.  Such an output can be viewed as one possible battle result for 

the given input scenario.  In order to understand the combat system in a scenario, it is 

necessary to replicate the simulation computer run with identical inputs but different 

random numbers used in the simulation sampling.  Thus, several possible battle results 

are accumulated for each scenario, and from them analysts can approximate the 
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distribution of the output measures or estimate mean values and confidence intervals.  

The primary model used in this research effort, CID is stochastic simulation model.   

Simulation 

Every simulation model including CID has its purpose: to describe the essential 

characteristic of the system as simply as possible.  A replica of the real system may be the 

best representation.  However, this is not the true purpose of the simulation model.  In 

fact, most of the simulation model uses input/output products of the system to estimate or 

calculate the measure of performance.  Entities, agents and objects similar to those in the 

actual world are used to estimate the performance easily. 

Entities 

The elements that make up the system are often referred to as entities [12:2]. In 

the frequently used war-game scenario, there are several hundred of these entities, but 

that is not complicated if all entities share similar program logic; particularly direct fire 

combat [4: Sec II, 8].  In CID, entities, including aircraft and other friendly sensors try 

to detect or classify objects as enemy forces on the battlefield.  Enemy forces such as 

enemy aircraft, vehicles, and so on can be thought of as the entities.  If the modeler 

creates an aircraft as an entity, its several on-board sensors can be attributes of that 

particular entity, the aircraft.  In this effort, we are going to think about a small number of 

aircraft with different probabilities of successful detection and classification. 
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Agents 

An agent is an active entity that has the capability of the component to make 

independent decisions [13:2]. Agents have certain characteristics: 

• An agent is identifiable: a discrete individual with a set of characteristics 

and rules governing its behaviors and decision-making capability.  Agents 

are self-contained.  The discreteness requirement implies that an agent has 

a boundary and one can easily determine whether something is part of an 

agent, is not part of an agent, or is a shared characteristic. 

• An agent is situated, living in an environment with which it interacts along 

with other agents.  Agents have protocols for interaction with other agents, 

such as for communication, and the capability to respond to the 

environment.  Agents have the ability to recognize and distinguish the 

traits of other agents. 

• An agent may be goal-directed, having goals to achieve (not necessarily 

objectives to maximize) with respect to its behaviors.  This allows an 

agent to compare the outcome of its behavior relative to its goals.   

• An agent is flexible, having the ability to learn and adapt its behaviors 

based on experience.  This requires some form of memory.  An agent may 

have rules that modify its rules of behavior [13:3]. 

As the model is gets more complex and larger, the modeler needs to think about 

agent-based modeling.  In CID, the reporting of a detection of enemy forces by friendly 
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aircraft or doing an automatic classification process right after the detection may make an 

entity capable of independent decisions.   

Objects 

An object is a discrete item that can be selected and maneuvered, such as an 

onscreen graphic [14].  Usually, objects are data and the procedures to manipulate the 

data in object-oriented programming.  An object-oriented simulation is focused on 

characterizing the manipulable data items (entities, objects) such that they are able to 

perform operations on and for themselves.  It also focuses system implementation by the 

interaction of the data items.  In the object-oriented approach, the model builder needs to 

send a message to invoke an operation on an object.  

Receiver Operating Characteristics Curve 

Receiver Operating Characteristics (ROC) analysis has been used to describe the 

tradeoff between true positive rate (TPR) and false positive rate (FPR) in signal detection 

theory.  Besides being a commonly useful performance measure, ROC analysis has 

specific usefulness for skewed class distribution and different classification error costs.  

These properties are very important into the area of cost-sensitive learning and learning 

in the presence of unbalanced classes [15:1]. 
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Figure 7: Confusion Matrix and Common Performance Metrics [15:2] 

Figure 7 shows four possible outcomes based on classifier and instance.  If the 

true class is positive and its simulation output is also positive, it is a true positive; if its 

predicted output is negative it is a false negative.  If the true class is negative and its 

simulation output classified as negative, it is a true negative; if its predicted output 

classified as positive, it is a false positive.  A set of true classes and predicted classes can 

be used to construct a two-by-two confusion matrix (CM).  

 

Figure 8: ROC Space Graph 
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ROC graphs have two dimensions in which the Y axis is true positive (TP) rate 

and the X axis is false positive (FP) rate.  Figure 8 shows ROC space with five discrete 

classifiers generating a (FP rate, TP rate) pair corresponding to its class value.  Point A, 

(0, 1) represents perfect positive classification.  This point is the best possible prediction, 

representing 100% sensitivity (recall) and specificity (1-fp rate).  If the performance is 

close to northwest (FP low, TP high), it means better classification.  Classifiers appearing 

on the left-hand side of the ROC graph, near the X axis, may be thought of as 

“conservative”: they make positive classifications only with strong evidence so they 

make few false positive errors, but they often have low TPRs as well [15:3].  Classifiers 

on the upper right-hand side of an ROC graph may be thought of as “liberal”: they make 

positive classifications with weak evidence so they classify nearly all positives correctly, 

but they often have high FPRs [15:3].  In figure 8, B is more conservative than .   C′

The point D on the diagonal line provides completely random guess.  And the 

point C located in the lower right triangle shows worse performance than random guess.  

The relation between point C and C′ shows an opposite condition of classification output 

on every true class – its TP rate becomes false negative rate (FNR) and its FP rate 

becomes true negative rate (TNR).  Hence, point C in the lower right triangle is negated 

to point C  in the upper left triangle. ′

Radial Basis Functions 

To make ROC curve approximations for this research we employ Radial Basis 

Functions (RBFs), which are a class of artificial neural networks with the ability to 

approximate non-linear functions and to interpolate data.  A RBF φ has a symmetric 
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output around a center μ , a sample site.  That is, ( ) ( )x xφ φ μ= − , where the argument 

of φ  is a vector norm, normally with 1 ≤ p ≤ 2 (in this research the Euclidean-norm).  A 

set of RBFs serves as a basis for representing multiple functions expressible as linear 

combinations of chosen RBFs and a polynomial basis p(x):  

     
1

( ) ( ) ( )
m

j
j

y x p x w x xφ
=

= + ∑ − j    (2.2) 

To solve for the weights w and polynomial coefficients c (note this c vector is 

different than the scalar in the RBF), we seek weights such that for interpolation values 

1,..., )m(f f f= , .  Furthermore, because there are more parameters than data, 

we seek:    

( ) ( )y x x= f

1
( ) 0

m

j j
j

w p x
=
∑ =       (2.3) 

This gives the following system,  

           (2.4) 
0 0T

A P w f
P c

⎛ ⎞⎛ ⎞ ⎛
=⎜ ⎟⎜ ⎟ ⎜

⎝ ⎠⎝ ⎠ ⎝

⎞
⎟
⎠

where  , ( )i j i jA x xφ= −  for i,j=1,…,m, and , ( )i j j iP p x=  for i=1,…n and j=1,…,k, where 

k is the number of polynomial coefficients in the basis representation.   

Several RBFs exist with various advantages to each.  The bi-harmonic, ( )r rφ =  

with a linear polynomial, and the tri-harmonic or cubic spline, 3( )r rφ = with a quadratic 

polynomial, are popular for fitting functions of three variables.  The multi-quadric, 

2 2( )

( )

r r cφ = +

2

, is useful for fitting topographical data.  The thin-plate spline, 

, is popular for fitting smooth functions of two variables.  Other RBFs 

include the inverse quadric, , and the Gaussian, .  

Recall, r is the norm from equation (2.2).  The parameter c is a positive constant, 

2 log( )r r rφ =

2 2 1/( ) ( )r r cφ −= + 2 )r cr−( )φ exp(=
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recommended to be equal to the mean of the distances between sample sites [16].  

MATLAB includes a thin-plate spline in its Spline Toolbox, but it can only be used for 

functions of two variables.  In this research, the thin-plate spline kernel and a linear base 

polynomial are used to generate the ROC curves since this combination made the most 

appropriate approximation throughout many trials.  It should be mentioned that RBFs are 

much more general than presented here.  In fact, the following are the true general 

definitions of classes of RBFs: 1) surface splines are any RBF such that , ( ) kr rφ = k∈  

and odd, or , ( ) log( )kr r rφ = k ∈  and even; 2) multiquadrics are any RBF such that 

2 2
k

c+( )r rφ = , k > 0 and ; 3) inverse multiquadrics are any RBF such that k∉

2 2
k

c+( )r rφ =  and k < 0; 4) Gaussians are any RBF such that .   2exp( )r c= −( )φ r

Monte Carlo Simulation 

A Monte Carlo simulation has a algorithm that depends on repeated random 

numbers, U(0,1) random variates to compute its results.  It is employed for finding 

solutions of certain stochastic or deterministic problems [25].  Due to its reliance on 

repeated calculation of random numbers, Monte Carlo simulation is appropriate applied 

in a computer, especially the MATLAB tool is exploited in this thesis.  The name “Monte 

Carlo” simulation initiated during World War II, when this method was applied to 

problems associated with the development of the atomic bomb.  Monte Carlo simulation 

has been widely applied to work out certain problems in statistics that are not analytically 

tractable [25:74].   
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Mathematical Framework to Optimize CID System 

A mathematical framework for optimizing an ATR system is provided by Laine 

and Bauer [17].  Here we give a brief introduction concerning their work and 

subsequently exploit their efforts in this research. 

Summary of Previous Mathematical Frame Work for ATR 

The purpose of their effort is to present the concepts of a new methodology to 

optimize ROC and rejection thresholds, for an ATR system [17:1].  They create an 

objective function that includes time and the constraints satisfy both decision maker 

preferences and traditional engineering measures of performance.  Many CID problems 

including ATR can be modeled using two classes. For instance, an ATR system may 

declare an unknown object as “enemy” or “friend” in a situation that may include clutter 

and neutral forces [17:2].  ROC curve analysis is a well-known method to study CID 

systems.  Given a finite data set, a standard ROC curve, f, can be thought of as a function 

of estimated performance measures [18].  They generated a ROC curve, f, by varying a 

decision threshold, θ , over its range, Θ  as shown in  

{ }( ) ( ), ( ) |FP TPf f P Pθ θ θ θ= = ∈Θ .    (2.5) 

They introduced the CM below with respect to their true classes and classifier labels.  
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Table 1: Confusion Matrix with Two Hostile Classes and Rejection [17:5] 

TOD: Target of the day, OH: Other hostile, FN: Friend or neutral, ND: No declaration

ECR: Critical error, ENC: Non critical error
 

They included a “non-declaration” option to their CM and did CM analysis using 

vertical and horizontal outputs.  TOD is the most desired enemy target among a variety of 

enemies.  To make mathematical formulation they deducted the probability of critical 

error is defined as probability associated with the union of the four output label and true 

class intersections, given a declaration is made, as shown in equation. (2.3) and (2.4) 

[17:5].   

CR

(" " ) (" " )
( )  

(" " ) (" " )
P TOD FN P OH FN

P E P declaration
P FN TOD P FN OH

⎛ ⎞⎛ ⎞
= ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

I U I

U I U I
  (2.6) 

CR

(" " | ) ( ) (" " | ) ( )
(" " | ) ( ) (" " | ) ( )

( )
1 ( (" " | ) ( ) (" " | ) ( ) (" " | ) ( )

P TOD FN P FN P OH FN P FN
P FN OH P OH P FN TOD P TOD

P E P
)P ND TOD P TOD P ND OH P OH P ND FN P FN

+⎛ ⎞
⎜ ⎟+ +⎝ ⎠=

− + +
(2.7) 

They also derived non-critical errors ( ) in a similar manner to .  Both  and 

 may be calculated directly from the estimated probabilities by the horizontal 

NCE CRE NCE

CRE
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analysis of the CM frequency counts [17:6].  They classified their decision variables as 

discrete and continuous depending on characteristic of each variable.  The decision 

variables may be discrete, such as an indicator variable to identify a specific fusion 

algorithm , use of specific sensors ( , or a predetermined number of minimum 

looks (ML), or they may be continuous, such as the thresholds associated with a 

sensor/fusion combination [17:6].  The objective function which is shown as equation 

(2.8), maximizing the probability of true positive target declarations across time, satisfied 

the determination of the optimal ATR system identified by the optimal fusion rule, with 

the optimal selection of: sensors, forced looks and a continuous threshold [17:7].  

( )iF )jS

Objective function: 

( )arg maxTR ( )   m ze ( ),  the true positive rate
( ( ))

TP

x X TP

P xP x TPR x
E time x∈

= aximi   (2.8) 

They also made several constraints, such as initial warfighter operational 

constraints, lower, fusion rule constraint, sensor selection constraints and minimum look 

constraint.  Particularly, the warfighter operational constraints are limitations on incorrect 

fire decisions (vertical analysis), limitation of lower impact incorrect decisions (vertical 

analysis) and limitation of non-declarations (horizontal analysis).  The remaining 

research consisted of experiments/results using the formulation.  They also accomplished 

sensitivity analysis using different fusion algorithms. 
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Mathematical Frame Work for CID Simulation 

The ATR system is a part of CID system.  Particularly, an ATR system mainly deals with 

the target classification process.  In CID both the detection and classification systems are 

very important and essential parts.   

Table 2: Detection, Classification and System Confusion Matrices 

 

The above three tables show a CM of the detection process (upper), that of 

classification process (middle) and that of system (lower).  The color of each cell 

between the three tables represents relationships between the cells.  This is because the 

classification process depends on the output of the detection process, that is, something 

has to be detected before proceeding into the classification process.  We can see all the 

detected simulation output of the detection process at the classification CM.  The sum of 

same colors at the system will coincide with the count shown at the detection process CM 
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table of same color.  If we try to calculate TPR and  (critical error), we can use same 

idea presented in Laine and Bauer [17].   

CRE

The TPR about enemy is , the probability of enemy evaluation given 

true enemy.  The expansion about this probability is shown in 

)|"(" EEP

 
(" " ) first row and column of system's CM(" " | )

( ) sum of first column of system's CM
P E EP E E

P E
= ≈

I
 (2.9) 

As you see, TPR is described in vertical analysis of the CM frequency counts.  The , 

the probability true friend given evaluation of enemy for fratricide, can be expressed in 

the similar manner.   

CRE

 
( " ") first row and second column of system's CM( | " ")

(" ") sum of first row of system's CM
P F EP F E

P E
= ≈

I
 (2.10) 

The  is represented in horizontal analyses of the CM frequency counts.  In this effort, 

we also define the label accuracy that is actually needed to a warfighter before he makes 

fire decision.   

CRE

 
( " ") first row and column of system's CM( | " ")

(" ") sum of first row of system's CM
P E EP E E

P E
= ≈

I
 (2.11) 

How CID modeling is currently performed in Combat Models 

Background of Target Acquisition Process 

CID is the most essential part of the current target acquisition process and has 

been developed dramatically in recent years.  Most of target acquisition modeling is 

based on wartime work “Search and Screening”, report 56 of the U.S. Navy Operations 

Evaluation Group [4: Sec IV, 1].  In the report, Koopman defined detection as, “that 
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event constituted by the observer’s becoming aware of the presence and possibly of the 

position and even in some cases the motion of the target” [19].  The word, “detection” is 

used both generically to denote the entire target acquisition phenomenon (Koopman’s 

definition) and as a particular level of acquisition in the above spectrum [4: Sec IV , 1].  

If there is no clear description the intended meaning is specified in this section.  From the 

OEG 56 report [19], two fundamental stochastic detection models, glimpse model and 

continuous looking model were established.  Most subsequent detection model have 

included aspects of one or the other of Koopman’s basic models [4: Sec IV, 2].   

The Glimpse Model Combat Simulations 

If the observer is searching one specific target, he will search the location of a 

target once per pass.  Similarly, rotating scan radar will have its beam on the target once 

during each rotation [4: Sec IV, 2].  Such an intermittent opportunity of detection is a 

glimpse.  Each glimpse considered to be a Bernoulli trial has  which is the probability 

of detection of the target on the ith glimpse.  And applying simple probability 

considerations, assuming independence of trial, yield 

ig

-1

1

Prob (no detect on first n-1 glimpse) = (1- )
n

i
i

g
=
∏    (2.12) 

-1
th

1

Prob (first detect on n  glimpse) = (1- )
n

n
i

g
=
∏ ig

g

   (2.13) 

       (2.14) 
1

Prob (detect in first  glimpse) =1- (1- )
n

i
i

n
=
∏

Where all the s are equal the number of glimpses until first detection is distributed 

according to the geometric probability distribution [4: Sec IV, 3].   

ig
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There glimpse probabilities,  are known for the prevailing observation 

conditions, and modelers want to use the glimpse model as the target acquisition module 

of a combat simulation.  For each time step, the detection model can operate as follows.   

ig

 

ROUTINE TGT_ACQUISITION (OBS) 
{Called for each observer during each time step} 
 

LOOP over each potential target, TGT 
 

Compute the value of  as a function of observation conditions for this TGT. ig
 

Note that  = 0 is a possibility if the target is impossible to detect at this time. ig
 

Simulate a Bernoulli trial with success probability = . ig
 

IF result is success then TGT is detected by OBS so add to detected list. 
 

END IF 
 

END LOOP 
 
END ROUTINE [4: Sec IV, 4] 

 

The above detection model considers a fixed time step and the time step interval is the 

same as the glimpse interval.   

The Continuous Looking Model in Combat Simulations 

The second fundamental stochastic detection model is the continuous looking 

model and has been used in most modern high resolution combat simulations due to its 

high flexibility and easy fitting into the structure of an event scheduled simulation [4: Sec 

IV, 6].  The continuous looking model has a detection rate function, D(t), which has the 
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characteristic that the probability of detection in a short time is proportional to the length, 

, of the interval and is given by: TΔ

Prob (detect in [t, t+ TΔ ]) = D(t) T∗Δ  [4: Sec IV, 6].    (2.15) 

If we assume constant D that D(t) = D for all t and use T = ( )Tn∗ Δ  in a longer time 

interval of length, we have the mathematics of the continuous looking model to yield: 

Prob (detect in length T) = 1 – Prob (fail n times) = 1 – (1 – D  )n
T∗Δ

       = 1- (1 – )nDT
n  [4: Sec IV, 6].    (2.16) 

In the limit, n approaches infinity and TΔ  approaches zero with the constant T.  This is 

identical to  

Prob (detect in length T) = 1 – ( )DTe −  [4: Sec IV, 6].   (2.17) 

The last formula is the cumulative distribution function of the exponential distribution 

and is very frequently used to model the time required to detect a target [4: Sec IV, 6].  In 

effect, the mathematics of the two fundamental models has equivalence.  This is because 

the exponential distribution is the continuous analogue of the discrete geometric 

distribution which appeared in the glimpse model [4: Sec IV, 6].  Both have the 

assumption of independence of successive increments of time and the memory-less 

property [4: Sec IV, 6].   

Simulation Analysis Techniques 

To evaluate the output data, modelers would employ several techniques of 

analysis, since it is more advisable than doing just one technique.  If the modeler uses one 
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technique, he may get an incorrect evaluation about the output data.  In this effort, three 

different evaluation methods are contrasted.   

Linearly Constrained Discrete Optimization (LCDO) 

Optimization is an important tool in decision science and in the analysis of 

systems [21].  To make use of this tool, we have to first identify an objective function and 

its variables.  And often, the variables are limited by some constraints.  In this research, 

our objective is to find the threshold combination that minimizes the cost and maximizes 

label accuracies.  The threshold combinations of this effort are drawn from ROC curves 

and they are members of a finite set.  Before we optimize, we need to make an 

appropriate model that identifies the objective, variables, and constraints for a given 

problem [21].  The model description including variable definitions will be presented in 

the next Chapter.   

Mathematically, optimization is the minimization or maximization of a function 

subject to constraints on its variables [21].  We generally use the following notation: 

1. x is the vector of variables, also called parameters or unknowns; 

2. f is the objective function, a (scalar) function of x that we want to 

maximize of minimize; 

3. ci are constraint functions, which are scalar functions of x that define 

certain equations and inequalities that the unknown vector x must satisfy 

[21].   

Using this notation, the optimization problem can be written as follows: 
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Here I and E are sets of indices for equality and inequality constraints, respectively.   

X1

X2

Feasible Region

x*

X1

X2

Feasible Region

x*

 

Figure 9: Example of Geometrical Representation of General Optimization Problem 

The feasible region which shown in figure 9 is the set of points satisfying all the 

constraints, and the point x*, which is the solution of the problem.  Sometimes it is 

necessary to label the variables with two or three subscripts.   

Robust Parameter Design with Taguchi’s S|N ratio: Crossed Array Design 

 
The RPD is an approach to produce a realization of activities that emphasizes 

choosing the levels of controllable factors (or parameters) to accomplish two objectives: 

(1) to ensure that the mean of the output response is at a desired level or target and (2) to 

ensure that the variability around this target value is as small as possible [22:464].  The 

general RPD problem was developed by Dr Taguchi in 1960 and the Taguchi method has 
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been widely used in the process of finding factors that are most important in achieving 

objectives in industrial processing [23].  The Taguchi method has an important aspect in 

terms of variability, caused by considering certain types of variables as noise variables or 

uncontrollable variables [22:466].  An essential part of the RPD problem is identifying 

controllable variables and the uncontrollable variables, noise variables that affect process 

or product performance, and then finding the optimal settings for the controllable 

variables that achieve an optimal objective function value while minimizing the 

variability transmitted from the noise variables [22:466].   

Table 3: Example of Crossed Array Matrix [22: 468] 

     (b) Outer Array    
     E - - - - + + + +    
     F - - + + - - + +    
     G - + - + - + - +    

(a) Inner Array           Responses 
Run A B C D                     mean SNL 

1 -1 -1 -1 -1  15.6 9.5 16.9 19.9 19.6 19.6 20.0 19.1  17.525 24.025
2 -1 0 0 0  15.0 16.2 19.4 19.2 19.7 19.8 24.2 21.9  19.425 25.522
3 -1 +1 +1 +1  16.3 16.7 19.1 15.6 22.6 18.2 23.3 20.4  19.025 25.335
4 0 -1 0 +1  18.3 17.4 18.9 18.6 21.0 18.9 23.2 24.7  20.125 25.904
5 0 0 +1 -1  19.7 18.6 19.4 25.1 25.6 21.4 27.5 25.3  22.825 26.908
6 0 +1 -1 0  16.2 16.3 20.0 19.8 14.7 19.6 22.5 24.7  19.225 25.326
7 +1 -1 +1 0  16.4 19.1 18.4 23.6 16.8 18.6 24.3 21.6  19.850 25.711
8 +1 0 -1 +1  14.2 15.6 15.1 16.8 17.8 19.6 23.2 24.2  18.313 24.852
9 +1 +1 0 -1   16.1 19.9 19.3 17.3 23.1 22.7 22.6 28.6   21.200 26.152 

Taguchi proposed two statistics from the crossed array design: the average of each 

observation in the inner array composed of controllable variable combinations across all 

runs in the outer array composed of noise variable combinations, and a summary statistic 

about the mean and variance, called signal-to-noise(S|N) ratio [22:468].  Then an analysis 

is performed to find out which setting of the controllable factors form the mean as close 

as possible to the desired response and a maximum value of the S|N ratio [22:469].  
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These S|N ratios are derived from the quadratic loss function, and here are three functions 

that are widely used and applicable [24: 418].   

• Nominal the best: 
2

210 logT
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S

⎛ ⎞
= ⎜ ⎟  (2.19) 
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However, this mean and variance modeling approach using a crossed array design 

may not explain appropriately the direct interactions between controllable variables and 

noise variables and in some examples, it can even mask these relationships [22:471].  If 

we care about the S|Ns (smaller-the better) ratio, equation (2.21), maximizing S|Ns will 

minimize 2

1

1(
n

i
i

)y
n =
∑ .  However, it is easy to show that 
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n
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Therefore, the use of S|Ns as a response variable confounds location and dispersion 

effects [24: 429].   
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Robust Parameter Design:  Combined Array Design and the Response Model 

Table 4: Example of a Combined Array Matrix [22:476] 

Run number x1 x2 z1 z2 z3 y 
1 -1.00 -1.00 -1.00 -1.00 1.00 44.2 
2 1.00 -1.00 -1.00 -1.00 -1.00 30.0 
3 -1.00 1.00 -1.00 -1.00 -1.00 30.0 
4 1.00 1.00 -1.00 -1.00 1.00 35.4 
5 -1.00 -1.00 1.00 -1.00 -1.00 49.8 
6 1.00 -1.00 1.00 -1.00 1.00 36.3 
7 -1.00 1.00 1.00 -1.00 1.00 41.3 
8 1.00 1.00 1.00 -1.00 -1.00 31.4 
9 -1.00 -1.00 -1.00 1.00 -1.00 43.5 

10 1.00 -1.00 -1.00 1.00 1.00 36.1 
11 -1.00 1.00 -1.00 1.00 1.00 22.7 
12 1.00 1.00 -1.00 1.00 -1.00 16.0 
13 -1.00 -1.00 1.00 1.00 1.00 43.2 
14 1.00 -1.00 1.00 1.00 -1.00 30.3 
15 -1.00 1.00 1.00 1.00 -1.00 30.1 
16 1.00 1.00 1.00 1.00 1.00 39.2 
17 -2.00 0.00 0.00 0.00 0.00 46.1 
18 2.00 0.00 0.00 0.00 0.00 36.1 
19 0.00 -2.00 0.00 0.00 0.00 47.4 
20 0.00 2.00 0.00 0.00 0.00 31.5 
21 0.00 0.00 0.00 0.00 0.00 30.8 
22 0.00 0.00 0.00 0.00 0.00 30.7 
23 0.00 0.00 0.00 0.00 0.00 31.0  

Due to the weakness of the crossed array design, Montgomery [22] suggests 

combined array designs and the response model approach, which may be more 

appropriate for interactions between controllable variables and noise variables (rather 

than the crossed array design and its mean and variance approach).  The model takes the 

familiar regression form of: 

  (2.23) ∑∑∑ ∑∑ ∑
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where β s are the control coefficients, γ s are the noise coefficients and δ s are the 

interaction coefficients.  If we generalize the above regression result with k controllable 

variables and r noise variables, the general response model is 
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where f(x) is the portion involving only the controllable variable and h(x, z) are the terms 

involving the main effects of the noise factors and interactions between the controllable 

and noise factors [22:472].  Because noise variables are coded such that the design points 

are symmetric about zero, the mean model for the response expectation is: 
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and the variance model is: 
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Contour plots and surface plots are typically used to show mean model and variance 

model.  The goal is to find the set of parameters that optimize the response with the 

minimal variance.   
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III.  Methodology 
 
 

Introduction 

The CID scenario that this effort is considering is an Air to Ground scenario.  The 

basic concept is shown in the figure below.   

 

 Figure 10: Concept Picture of CID Process 

First, the friendly force’s aircraft divide the ROI into constant size blocks.  Then the 

aircraft performs detection and classification for each block and in the model save the 

result as data.  In this effort, we assume Non-cooperative communication for doing 

detection and classification in the given ROI, and declare enemy, friend or clutter based 

on the output of the system.  The ROC analysis and Monte Carlo simulation mentioned in 

Chapter 2 are used to create the responses (the label accuracy and the cost) of the 

simulation.  After finding the responses, we can obtain optimal ROC threshold settings 

by applying a LCDO, Taguchi’s S|N ratio method and RPD with a combined array design.   
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CID simulation needs several inputs such as: an artificially formed area 

(battlefield) consisting of enemies, friends, neutrals and clutter, prior confusion matrices 

obtained from predetermined ROC curves and cost coefficients associated with the 

incorrect detection and classification.  In this research, the prior ROC threshold is 

identical to the prior CM because, predetermined ROC thresholds are expressed through 

the prior CM.  The most important output data of the CID simulation is the CM with 

attributes to obtain optimal ROC thresholds settings which optimize objective functions 

such as maximum label accuracy of the system and minimum error cost.  To create the 

posterior CM, we need a logical random simulation process such as Monte Carlo 

simulation to describe the actual detection and classification processes.   
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Figure 11: Flowchart of CID Process 

First, the model executes the design matrix for simulation, then it creates a virtual 

ROI and assigns prior CMs according to design matrix.  After creating the enviornment 

of the system, the model repeats detection and classification processes appropriately and 

it deduces a posterior CM to obtain data needed when we analyze simulation 

performance.  If the system tested all the prior CM combinations in the pre-created ROI, 
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the model creates the next ROI and repeats what it has been done before.  Unless the 

system has tested all the prior CM combinations, the model assigns next prior CM and 

completes its detection and classification processes until all the prior CM combinations 

are tested in the present ROI.  After examining all simulation design points, the feasible 

region can be obtained by examinning several constraints.  Then the optimal thresholds 

combination can be found by LCDO, Taguchi’s S|N ratio method, and RPD with a 

combined array.  Finally, a confirmation experiment is performed to compare each 

solution from different methods.   

Making the Design Matrix 

This simulation model has two responses: the label accuracy and the cost.  To get 

optimal thresholds combination, we employ three methods: LCDO, Taguchi’s S|N ratio 

and RPD.  The LCDO procedure is relatively simpler than the others because, it just 

deduces the prior CMs that optimize the objective function by satisfying constraints.  We 

need to make a design matrix according to design of experiment principles in order to 

employ RPD techniques.  In the case of using Taguchi’s S|N ratio, a crossed array design 

matrix is needed and in the case of using RPD, a combined array design matrix is 

required to perform the simulation.  This model first uses a combined array design matrix 

and obtains simulation responses.  Then the combined array matrix is transformed to a 

crossed array design matrix by easy MATLAB manipulation.   
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Table 5: Example of the Design Matrix 
 

Comb # TPR_D FPR_D TPR_C FPR_C Map size # of Enemy # of Friend Cost Coef
1 0.4422 0.0005 0.4082 0.0005 100 5 5 1 
2 0.4932 0.001 0.4082 0.0005 100 5 5 1 
3 0.5694 0.0015 0.4082 0.0005 100 5 5 1 
4 0.6098 0.002 0.4082 0.0005 100 5 5 1 
5 0.644 0.0025 0.4082 0.0005 100 5 5 1 
   -   -   
   -   -   

100828 0.9102 0.014 0.68 0.0045 100 40 5 2 
100829 0.9292 0.0145 0.68 0.0045 100 40 5 2 
100830 0.9307 0.015 0.68 0.0045 100 40 5 2 
100831 0.9308 0.0155 0.68 0.0045 100 40 5 2 
100832 0.9308 0.016 0.68 0.0045 100 40 5 2 

   -   -   
   -   -   

159992 1 0.046 0.9667 0.05 1000 40 40 2 
159993 1 0.0465 0.9667 0.05 1000 40 40 2 
159994 1 0.047 0.9667 0.05 1000 40 40 2 
159995 1 0.0475 0.9667 0.05 1000 40 40 2 
159996 1 0.048 0.9667 0.05 1000 40 40 2 
159997 1 0.0485 0.9667 0.05 1000 40 40 2 
159998 1 0.049 0.9667 0.05 1000 40 40 2 
159999 1 0.0495 0.9667 0.05 1000 40 40 2 
1600 0 0 1 0.05 0.9667 0.05 1000 40 40 2  

There are controllable factors and noise factors in the design matrix shown in 

table 5.  The controllable factors are ROC thresholds for detection and classification and 

the noise factors are the size of ROI represented as the total sum of grid points, the 

number of enemy targets, the number of friendly targets and the cost coefficient for 

fratricide.  We have two controllable factors with 100 levels each, and four noise factors 

with 2 levels each.  Thus the number of design points is 160,000 and the whole forms a 

full factorial design (1002*24=160000).  In effect, if the objective function is the label 

accuracy, the cost coefficient is not necessary and the number of noise factor is reduced 

from four to three.  Thus, we only need 80,000 design points because of 1002*23=80000.  
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However, here a design matrix is analyzed that has 160,000 design points to acquire two 

responses at the same time.   

Establishment of Virtual ROI to Set up System Environment 
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Figure 12: Configuration of ROI 

Figure 12 shows the process of configuring a real ROI to virtual ROI via a matrix 

to execute simulation.  The CID process needs a virtual ROI to employ given thresholds 

since detection and classification use a virtual ROI when they evaluate each grid with a 

specific prior ROC threshold.  There are a number of components that construct the 

actual battlefield; however, this model deals typically with enemy, friend, and clutter 

(including neutral, civilian, and every object except enemy and friend).  In the virtual 

ROI, the enemy is represented by“1”, friend is represented by “2”, and clutter is 

expressed by “0”.  Each grid point can only have one characteristic out of three (enemy, 

friend and clutter).  As it is shown at figure 12, the matrix established by these three 

figures can be thought as a virtual ROI.  Once the virtual ROI is established, the system 

tests all ROC threshold combinations by comparing it with random numbers and declares 

the grid point enemy, friend or clutter based on the result of the comparison.  The virtual 

ROI is considered a noise factor because in the case of a real battlefield, the size of the 
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ROI, the characteristics of the grid (enemy, friend or clutter), the number of enemy and 

that of friend in the ROI, and so forth are generally hard to predict.   

Assignment of Prior CM 

After establishing a virtual ROI, the system assigns the prior CMs, ROC 

thresholds that are read from predetermined ROC curves for detection and classification.  

Each one hundred (FPR, TPR) pair for the detection and the classification processes is 

used in this simulation.  The number of different combination of detection and 

classification (DEC (FPR, TPR), CLASS (FPR, TPR)) threshold is 10,000 due to 

100*100 = 10000.   
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Figure 13: Description of Deduction of Prior CMs from ROC Curves 

Figure 13 describes the process of constructing prior CMs, detection (upper) and 

classification (lower) from two different ROC curves.  The detection ROC curve has a 

higher TPR at a same FPR (relatively low FPR) than that of the classification ROC curve 

since the detection is easier than the classification.  That is, generally, the probability of 

correct detection is higher than that of correct classification.  In a real CID simulation 
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model, the simulator has to use ROC curve having a much lower FPR than that of FPR 

shown in figure 13.   

In the upper-left hand corner of the detection prior CM (denoted the (1,1) block), 

the TPR of the detection is the probability of being detected at detection process when an 

object (enemy or friendly force) exists at the one particular block.  In the (1, 2) block of 

the detection prior CM, the FPR of the detection is the probability being detected even 

though the block is clutter.  In the (1, 3) block of the detection prior CM, the FNR of the 

detection is the probability of not being detected although there is an object (enemy or 

friend) in the block.  In the (1, 4) block of the detection prior CM, the TNR of the 

detection is the probability of declaring clutter when the grid is clutter.  The (1, 1) block 

and the (1, 4) block represent correct detection; however, the (1, 2) block and the (1, 3) 

block indicate errors of detection process and thus they will incur costs of themselves.   

Classification is performed based on the result of the detection.  In the case of 

declaring clutter as an object, the grid which is actually a clutter enters the classification 

process.  Thus, there is one more column than the original prior classification CM which 

reflects a 50-50 percent probability to declare clutter incorrectly detected as objects.  On 

the other hand, detection may be failed although the block has an object (enemy or a 

friendly force).  In this case, the block which should have been detected can not go into 

classification process and later, it will be classified as detection error.  The two detection 

errors which have been explained are very likely to happen in the real CID system owing 

to FPR and FNR of the detection.  The first two rows and columns of the prior 

classification CM are based on correct detection about enemy or a friendly object.   
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In the upper-left hand corner of the classification prior CM (denoted the (1, 1) 

block), the TPR of the classification is the probability of being classified as enemy at 

classification process when the enemy actually exists at the one specific block and it has 

been detected through the detection process.  In the (1, 2) block of the classification prior 

CM, the FPR of the classification is the probability of being classified as enemy even 

though the true class of detected object is a friendly force.  In the (2, 1) block of the 

classification prior CM, the FNR of the classification is the probability of being classified 

as a friendly force although the true class of detected grid is enemy.  In the (2, 2) block of 

the classification prior CM, the TNR of the classification is the probability of being 

classified as a friendly force when the true class of the grid is a friendly force and that 

particular grid has been detected through the detection process.  After assigning these 

prior CMs, the system gets into the detection and classification processes to test those 

prior CMs.   

Detection and Classification Processes 

The model established a virtual ROI according to the design matrix at the opening 

of the simulation.  The system performs detection and classification processes and makes 

posterior CMs by employing 10,000 prior CM combinations at the established virtual 

ROI.  To test one prior CM combination, this study uses Monte Carlo simulation, a 

random number comparison method.  That is, the system compares its prior CM 

combinations with a random number from 0 to 1 in terms of every grid point which is on 

the pre-established virtual ROI and decides success or failure of the detection and the 

classification.   
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        for k = 2:numberchoices 
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            out(k,1) = prob(k) + out(k-1,1); 
        end 
        check = 0; 
        index = 1; 
        while check == 0 
            if out(index,1) >= rand(1) 
                output1(i,j) = column_d(index); 
                check = 1; 
            else 
                index = index + 1; 
            end 
         end 
Figure 14: The Part of Detection and Classification MATLAB Code and its Description 

As we see at ROC curve theory of Chapter 2, the sum of TPR and FNR and that 

of FPR and TNR are equal to 1.  The right figure (a prior CM for detection) of the figure 

14 explains a transition of the assigned prior CM and the first three lines of the left 

MATLAB code make these transition.  The MATLAB function, “Rand (1)” creates 

random number between 0 and 1.  For example, when there is an object (enemy or a 

friendly force at) on the one grid point of the established virtual ROI and the “Rand (1)” 

is equal to 0.623.  Then if the TPR of detection is greater than 0.623, the process 

recognizes the detection of the object but if not greater than 0.623 the process declares 

that grid point as clutter.  In case of detection, the situation always can be included within 

one of both mentioned cases because, “Rand (1)” is smaller than one and the sum of TPR 

and FNR is always one.   

Detection is the process of determining whether there is an object (enemy or a 

friendly force) in the ROI or not.  The meaning of having detected something is that there 
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is enemy or a friendly object and that of having detected nothing is that there is nothing 

as unusual.  This model uses integers to express events in the program.  If the system 

detects something, the output of that particular grid point is “3” and if not the output is 

“0”.  The grid points with results of “3” at detection process automatically go to 

classification process.   

The classification process declares enemy or a friendly object using a similar 

method to that of the detection process.  However, as mentioned before, the system gives 

50-50 probability for the incorrect detection about clutter and declares enemy or a 

friendly force by employing Monte Carlo simulation (random number comparison).   

Due to using random numbers in Monte Carlo simulation, we need an appropriate 

number of inner replications so that we can estimate mean values.  The system which is 

used in this effort sets up 100 replications because as shown figure 15 the constant 

variance state appears after one hundred inner replications.   
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Figure 15: Changes of Variance by Varying the Number of Replications 
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Evaluating posterior CM for Analysis 

After finishing the detection and classification processes with a specific prior CM 

combination, we begin our analysis.  The analysis is performed by horizontal and vertical 

methods.  The posterior CM is made by comparing system’s declaration with the 

assigned virtual ROI.  The system can do nine different system declarations because, the 

model assumes that there are only three characteristics (enemy, a friendly force or clutter) 

at the ROI.  For example, in the case of assigning enemy to the first grid point of the 

virtual ROI, system declaration is one of three such as “enemy”, “friend”, or “clutter” and 

if it is declared as enemy, one count is added to the (1, 1) block of the system posterior 

CM.   

Table 6: Detection, classification and system posterior CMs (counts) 
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We can see three different posterior CMs at table 6.  The first table (upper) is the 

posterior CM of the detection process and the second one (middle) is that of the 

classification process and the third one (lower) is that of the system.  The system 

posterior CM is mainly exploited for analysis because, it covers both the detection and 

classification posterior CM (The first two posterior CMs are included in the system one).  

The count of purple components of the detection posterior CM represents the number of 

successful results of the detection process associated with the virtual ROI and it is same 

as the sum of purple components of the classification posterior CM and those of the 

system posterior CM.  The diagonal of a posterior system CM means the count of correct 

results of a system and the others (off-diagonals) represent the count of each possible 

error of a system.  The total sum of counts of a posterior system CM is equal to that of 

grid points (size of virtual ROI).   

The upper-left hand corner of the system posterior CM (denoted the (1, 1) block) 

is the TPR of the system.  It is one of our constraints and it can be evaluated by following 

formula.   

(" " ) first row and column of system  CM   (" " | )
( ) sum of first column of system  CM

P E Esystem TPR P E E
P E

= = ≈
I  (3.1) 

System errors are classified into four categories according to their characteristics.  

The first one is the error that can cause fratricide, .  The second one is 

the error of declaring enemy as a friendly force, .  The third one is one 

of detection errors and it happens when the clutter is declared as an object (enemy or a 

friendly force), 

1 ( | " ")CRE P F E=

2 ( | " ")CRE P E F=

3 ( | " " " ")CRE P C E or F= .  The last one is occurred when the system fails 
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to detect an object (enemy or a friendly force) and declares it as clutter, 

.  Throughout the horizontal analysis in terms of the system 

posterior CM, we can get following critical error rates. 

4 (  or  |"C")CRE P E F=

1 ( | " ")CRE P F E= =
( " ") first row and second column of system CM

(" ") sum of first row of system CM
P F E

P E
≈

I  (3.2) 

2 ( | " ")CRE P E F= =
( " ") second row and first column of system CM

(" ") sum of second row of system CM
P E F

P F
≈

I  (3.3) 

    
)"(")"("

)""()""()"
FPEP

FCPECPF
+
+""|"(3 orECPECR =

II
=   

sum of first a
sum of first

≈
nd second rows at third column of system CM

 and second rows at all columns of system CM
      (3.4) 

    
)"("

)""()""()
CP

CFPCEP II +C"|" or  (4 FEPECR  ==

sum of first a
≈

 CCost 1×=

nd second columns at third row of system CM
sum of third row of system CM

      (3.5) 

Using the TPR of the system and four error rates that have been evaluated above, 

we can find one of our objective function values, cost response by following formula.   

 
TPRsystemCECEC EC E CRCRCRCR  5432 4321 ×−×+×+×+  (3.6) 

 
The cost coefficient which the author employs is noise factor and it has low level of [1, 1, 

1, 1, 2] and high level of [5, 1, 1, 1, 2].  The cost is evaluated by summing the sum of 

error costs and multiplication of system TPR its negative coefficient.  This is because we 

need to consider two different effects such as the loss due to errors and the advantage 

owing to high TPR.  If we look at two levels of cost coefficient, the only thing is being 
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considered as a noise factor is the cost for fratricide.  Rather than analyzing for all cost 

coefficients, this research focuses on the error that gives rise to fratricide.   

The other response in this model is the sum of label accuracies, 

.  The TPR of the real system defined as  

can be one of post system (or operation) analysis to measure the performance and 

effectiveness of one executed operation, In contrast, a warfighter actually does not want 

the TPR of the system,  but rather ; they want to know the label 

accuracy of the target of interest to avoid tragedies such as fratricide, civilian attack, and 

so on before they make decision and firing.  However, if we only emphasize the label 

accuracy of enemy we may find a bad solution. We may find the parameter setting that 

maximizes the enemy label accuracy with poor friend label accuracy and clutter label 

accuracy.   

( | " ") ( | " ") ( | " ")P E E P F F P C C+ +

(" " | )P E E

(" " | )P E E

( | " ")P E E

The label accuracies, ,  and  can be calculated 

by the Bayes’ theorem and the law of total probability [26] and it is shown as follows: 

( | " ")P E E ( | " ")P F F ( | " ")P C C

(" " | ) ( )( | " ")
(" " | ) ( ) (" " | ) ( ) (" " | ) ( )

P E E P EP E E
P E E P E P E F P F P E C P C

=
+ +

  

first row and column of system CM
sum of first row of system CM

≈                (3.7) 

(" " | ) ( )( | " ")
(" " | ) ( ) (" " | ) ( ) (" " | ) ( )

P F F P FP F F
P F E P E P F F P F P F C P C

=
+ +

 

second row and column of system CM
sum of second row of system CM

≈                (3.8) 
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(" " | ) ( )( | " ")
(" " | ) ( ) (" " | ) ( ) (" " | ) ( )

P C C P CP C C
P C E P E P C F P F P C C P C

=
+ +

 

third row and column of system CM
sum of third row of system CM

≈ .                 (3.9) 

In this paragraph, the two responses for this study are explained.  This kind of 

procedure is performed at each of 160,000 design points.  Thus, same number of costs 

and the differences of label accuracy are created and also the TPR of the system and each 

error rate come into being to be used as constraints.   

Finding the Feasible Region 

After getting the responses and other output values, we find the feasible region 

that satisfies the constraints.  Before we determine the feasible region, we need to take an 

average of system responses for 10,000 different controllable factors (threshold 

combinations or Prior CM combinations).  We obtain 16 cases of responses by employing 

four noise factors with two levels for one specific threshold pair (Dec (FPR, TPR), Class 

(FPR, TPR)).  By taking an average, we can get average values in terms of  (i = 1, 2, 

3, 4) and the system TPR for 10,000 different controllable factors.  Then we find the 

feasible region by comparing each average response with its critical value in the 

following equations.   

i
CRE

 maximum Error rate( ),    1, 2, 3, 4i
CRE i i≤ =   (3.10) 

TPRTPR  minimum  system ≥     (3.11) 

The maximum error rate and the minimum TPR of the system are affected by the 

quality of ROC curves.  This is because if we use low quality ROC curves and high 
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critical values, it is hard to find threshold combinations which satisfy constraints and 

thus, it is hard to construct feasible region  

Finding Optimal Threshold Combinations  

After constructing the feasible region, the optimal ROC threshold (prior CM) 

combinations are analyzed by LCDO, Taguchi’s S|N ratio method and RPD with a 

combined array.  When the objective function is the cost, in the case of LCDO, the 

threshold combination which creates the minimum average cost at the crossed array 

matrix is the solution, in the case of Taguchi’s S|N ratio method the parameter which has 

minimum S|N ratio value is the answer and in the case of RPD, the response models of 

RPD and feasible region are used to investigate the optimal threshold combination.   

Next, when the objective function is the sum of label accuracies, in the case of 

LCDO, we just try to find the prior CM combination that makes the minimum average 

value at the crossed array matrix, in the case of Taguchi’s S|N ratio method, the prior CM 

combination which has the largest S|N ratio value is the solution and in the case of RPD 

with a combined array we make our judgment by overlapping feasible regions with its 

response models.   

Evaluation of Simulation Output 

The evaluation methods were briefly explained previously.  In this part we 

consider again the meaning of two responses and we will formulate problem according to 

three evaluation methods: LCDO, Taguchi’s S|N ratio method, and RPD using a 

combined array.   

The sum of the label accuracies can be optimized by maximization.  Why do we 

use maximization and what is the advantage of maximizing the sum?  From the CM of 
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the system, the diagonals represent correct evaluations and they are the sum proportional 

to label accuracies, .  Thus, we may get the solutions 

by maximizing sum of accuracies and this leads to minimize the off-diagonals 

components that usually make error costs.  By the way, there is a tradeoff such as a joint 

increment of the FPR and the TPR at a ROC curve.  Instead of finding the robust 

threshold combination we may lose the system’s measure of effectiveness.  Thus, if we 

use several constraints at the LCDO and Taguchi’s S|N ratio method we can guarantee of 

minimum measure of effectiveness.  However, in the case of RPD with a combined array, 

we may not use constraints if the feasible region does not match the region of robustness 

shown through RPD response model.   

( | " ") ( | " ") ( | " ")P E E P F F P C C+ +

The other response is the cost and it has to be minimized as much as possible.  

Throughout the cost analysis we may gain understanding of the relationship between 

error rates and the TPR of the system.  In other words, we may be able to find the relation 

between the costs due to mission accomplishment and the effectiveness of performing 

mission.  For example, in the case of an offensive operation to destroy enemy, the 

commander seriously considers between the loss of his force by fratricide and a daring 

attack for increasing effectiveness (including the importance of time, location, mission 

and so on).  We set the cost coefficient as a noise factor because, no one can predict the 

battlefield priority order and particularly, fratricide is given two different levels.  We also 

expect to see whether the two response types have same solution or not.   
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( , ) (Dec( , ),  Class( , ))D CX x x FPR TPR FPR TPR= =

Response [ , , ( 1, 2,3, 4)]CRCost TPR E i i =

Goal: Determine Optimal CID system

Decision factors:

1. The label accuracy

2. Costs of misdetection and that of misclassification are available

3. Constraints must be met

• Acceptable Error rate (incorrect fire control decisions)

• Acceptable minimum TPR

CID Simulation

 
Figure 16: CID Optimization Goal and its Evaluation Example 
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Figure 16 represents the variable of this simulation and the procedure of 

evaluation by LDCO and Taguchi’s S|N ratio method.  For employing two methods, we 

need first the values of responses and those of constraints.  After we found our responses, 

we try to shrink our threshold design points region by employing constraints.  The 

example of this constraint is described at figure 16 in terms of the number of feasible 

points when the constraints are being accumulated.  Except for the cost response graph 

(a), the other five represent the level of its constraint at each cost response by color index.  

Thus, the deep red of (b) at figure 16 is good performance since; the constraint is the TPR 

of the system and the deep blue reflects good performance at (c) ~ (f) of figure 16 

because their color indices represent error rates.   

Objective function 

The sum of label accuracies approach: 

   ( |" ") ( |" ") ( |" ")arg  max  ( ) ( ) ( ) ( ) maximize ( )E E F F C C
x X

Acc x P x P x P x Acc x
∈

= + +
 

   ( , ) (Dec( , ),  Class( , )D C )X x x FPR TPR FPR TPR= =  

The Cost approach: 

     
4

CR 5
1

arg min  ( ) E ( )  ( )  minimize ( )i
i

x X i

Cost x C x C TPR x Cost x
∈ =

= ⋅ − ⋅∑
   ( , ) (Dec( , ),  Class( , )D C )X x x FPR TPR FPR TPR= =  

  Subject to: 

    fratricide decisions, fireincorrect limit   )( 1
1 Π<xECR

    friend asenemy  oftion classifica missedlimit   )( 2
2 Π<xECR

    friendor enemy  asclutter  ofdetection incorrect limit   )( 3
3 Π<xECR

    4
4( )   limit missed detection of enemy or friendCRE x < Π

    rate positive  true the, system minimum guarantee )( 5 TPRxTPR Π>
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Taguchi’s S|N Ratio Method 

We can apply same kind of procedure after getting Taguchi’s S|N ratios from the 

crossed array design.  The original formula of  (signal to noise ratio smaller better) 

has been modified a little bit by eliminating its negative coefficient since the cost 

response is not less than 1.0.   

SS|N

Objective function: 

The sum of label accuracies approach: 

 L 2
1

1 1arg  max  S|N ( ) 10log( ),
n

x X i i

x
n y∈ =

= − ∑  n = the # of outer array combination 

      
( , ) (Dec( , ),  Class( , )

 response in the crossed array,

D C

i

)X x x FPR TPR FPR TPR
y accuracy
= =
=

 

       maximize S|NL(x), the signal to noise ratio 
 

The Cost approach: 

 

2
S

1

S

1arg  min  S|N ( ) 10log( ),  

the # of outer array combiniation, 
( , ) (Dec( , ),  Class( , )

 response in the crossed array,   
minimize S|N ( ),  the signal to noise ratio

n

i
x X i

D C

i

x z
n

n
)X x x FPR TPR FPR TPR

z Cost
x

∈ =

=

=

= =
=

∑

 

Subject to: 

Same as those of LCDO for both approaches 
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RPD with Combined Array Design 
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CID system and Evaluation (RPD with Combined Array)

CID Simulation

 

Figure 17: CID Evaluation Example at RPD 
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Figure 17 shows the procedure of evaluation by RPD with a combined array 

design matrix.  After finishing the simulation for all threshold combinations, we first do a 

regression and make a mean model and a propagation of error model.  Then the contour 

plots for those models are constructed and overlapping figure is also made.  By 

comparing the value of the mean and the propagation error we can find subjective robust 

point(s).   

Objective function: 

( , ) (Dec( , ),  Class( , )D C )X x x FPR TPR FPR TPR= =  

Obtaining reliable threshold combinations rather than using a specific 

objective function 

Subject to: 

Possible use of LCDO constraints 
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IV. Experiments and Results 
 
 

Introduction 

This research employs two ROC curve sets for experiments: (1) one normal ROC 

curve for classification and a little better one for detection, (2) much improved ROC 

curves for both but still the detection curve is better than the classification’s curve.  We 

can see how the ROC curves look like at the beginning of every experiment.  As we 

know through the previous Chapters, we have two responses and three evaluation 

methods.  At every ROC curve set, we will get three (if we find one answer at RPD with 

a combined array design approach) or more solutions (threshold combinations) for each 

response.  The critical values for error rates and the TPR have not been applied in these 

experiments thus the feasible region is all design points, all possible threshold 

combinations.  In addition, the confirmation experiments are carried out at the end of the 

experiments for each ROC curve set.   
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Figure 18: ROC Curves for 1st Experiment Set 

These ROC curves are created by RBFs [16].  The red points at the first two 

graphs have been utilized to erect two ROC curves.  From the ROC curves, we gather one 

hundred pairs of ((FPR), (TPR)) for detection and classification and thus, the total 

number of ROC threshold combinations is 10,000.   

The Cost Response Approach 

For the solutions of LCDO and Taguchi’s S|N method, the crossed array design matrix is 

required since we need the average cost and the across outer array.   SS|N
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Table 7: The Solutions of the Cost Response of the 1st ROC Set 

Method Comb # TPR_D TPR_C FPR_D FPR_C Cost S|N S 

LCDO 1704 0.6816 0.9153 0.04 0.18 39.8311 33.0715 

SN_L 1704 0.6816 0.9153 0.04 0.18 39.8311 33.0715 

RPD 803 0.524 0.7435 0.03 0.09 45.7075 34.1725 
 
The solution of the LCDO and that of the Taguchi method are same since the smallest 

value of  and that of the cost are occurred in the same threshold combination.  The 

answer of the RPD with a combined array is the 803rd combination and it is developed by 

following procedure.   

SS|N

Table 8: The Regression Analysis results of RPD Using the Cost Response of the 1st ROC Set 

  DoF MS F P-value 

SS reg 10558641032 17 621096531.3 26257.5058 0 

SS res 3784223296 159982 23654.0567   

SSt 14342864329 159999    

R^2 0.7362     
      
 Coefficient Std Error T T-crit P-value 

Intercept -194.9538 3.4819 -55.9899 1.96 0 
X1 63.8489 3.3826 18.8755 1.96 0 
X2 -19.2512 3.5119 -5.4817 1.96 0 

X1^2 475.2185 2.544 186.8023 1.96 0 
X2^2 18.6246 2.1806 8.5409 1.96 0 
X1X2 -8.8243 3.6481 -2.4189 1.96 0.0156 

Z1 25.0018 1.5163 16.4884 1.96 0 
Z2 27.6157 1.5163 18.2122 1.96 0 
Z3 5.018 1.5163 3.3093 1.96 0.0009 
Z4 18.2774 1.5163 12.0537 1.96 0 

X1Z1 226.616 1.3492 167.9617 1.96 0 
X1Z2 -14.1357 1.3492 -10.477 1.96 0 
X1Z3 -12.4069 1.3492 -9.1957 1.96 0 
X1Z4 1.6665 1.3492 1.2351 1.96 0.2168 
X2Z1 0.0032 1.0396 0.0031 1.96 0.9975 
X2Z2 -23.0579 1.0396 -22.1792 1.96 0 
X2Z3 7.9989 1.0396 7.6941 1.96 0 
X2Z4 -19.7686 1.0396 -19.0153 1.96 0 

Variable Definition     
X1: TPR_D, X2: TPR_C, Z1: Map size, Z2: # of Enemy, Z3: # of Friend, Z4: Cost coefficient 
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cost ( ) ( , )y f x h x z ε= + +

1 2

    (3.1) 

2 2
1 2 1 2( ) 194 63.85 19.25 475.22 18.62 8.82f x x x x x= − + − + + − x x

1 3

  (3.2) 

1 2 3 4 1 1 1 2

1 4 2 1 2 2 2 3 2 4

( , ) 25 27.62 5.02 18.28 226.62 14.14 12.41
             +1.67 0 23.06 8 19.77
h x z z z z z x z x z x z

x z x z x z x z x z
= + + + + − −

+ − + −
 (3.3) 

As shown by the regression result, all but X1Z4 and X2Z1 coefficients are 

statistically different than zero.  The reason there is no interaction between the TPR of the 

detection (X1) and the cost coefficient (Z4) might be explainable since our cost 

coefficient, one of noise factors describes only the fratricide cost and it is primarily 

determined by classification process.  The map size (Z1) represents the size of a ROI and 

actually it reflects the clutter which is usually identified through the detection process 

(X1), not the classification process (X2).  The model also has a reasonable R-squared 

value of .7362.  To get the best answer in RPD with a combined array, this model is then 

used to develop surfaces for the response mean and propagation of error as shown below 

[22].  These plots are then combined into a contour plot to estimate the robust parameters.   
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Figure 19: Surface, Contour and Overlay Plots for RPD Using the Cost Response of the 1st ROC Set 

The above overlay plot shows that the minimal error-cost takes place at the red circle that 

is the point of the 803rd combination.  Due to tradeoff between the FPR and the TPR, the 

robust solution might appear around the middle of the design space.  At the confirmation 

experiment each solution found by each technique will be investigated to prove which 

one works well in different cases.   
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The Label Accuracy Response Approach 

In this section, the experiment is carried out with respect to the sum of label 

accuracies and the same methods of finding solutions are employed.   

Table 9: The Solutions the Label Accuracy Response of the 1st ROC Set 

Method Comb # TPR_D TPR_C FPR_D FPR_C Sum of Acc S|N L 
LCDO 1306 0.8443 0.8919 0.06 0.14 0.8904 38.9399 
SN_L 1306 0.8443 0.8919 0.06 0.14 0.8904 38.9399 

RPD 1st 904 0.6816 0.8 0.04 0.1 0.865802 38.5304 
RPD 2nd 1005 0.8 0.8375 0.05 0.11 0.885893 38.8577  

The solutions of the LCDO and the Taguchi’s method are the same since the largest value 

of S|N ratio and that of accuracy occupied same threshold combination.  The two 

subjective solutions of RPD with a combined array have been collected by following way.   

Table 10: The Regression Analysis Results of RPD Using the Label Accuracy Response of the 1st ROC Set 

  DoF MS F P-value 
SS reg 4093.6423 17 240.8025 7500.9201 0 
SS res 5135.9117 159982 0.0321   

SSt 9229.554 159999    
R^2 0.4435     

      
 Coefficient Std Error T T-crit P-value 

Intercept 1.2385 0.0041 305.3164 1.96 0 
X1 -0.0297 0.0039 -7.5256 1.96 0 
X2 0.0366 0.0041 8.9432 1.96 0 

X1^2 -0.7081 0.003 -238.9415 1.96 0 
X2^2 -0.1025 0.0025 -40.3634 1.96 0 
X1X2 -0.001 0.0042 -0.234 1.96 0.815 

Z1 0.1066 0.0018 60.3436 1.96 0 
Z2 -0.0738 0.0018 -41.7539 1.96 0 
Z3 -0.0276 0.0018 -15.6097 1.96 0 
Z4 0 0.0018 0 1.96 1 

X1Z1 -0.1611 0.0016 -102.5249 1.96 0 
X1Z2 0.0849 0.0016 54.0217 1.96 0 
X1Z3 0.0683 0.0016 43.4402 1.96 0 
X1Z4 0 0.0016 0 1.96 1 
X2Z1 0.0019 0.0012 1.5436 1.96 0.1227 
X2Z2 0.0423 0.0012 34.9091 1.96 0 
X2Z3 -0.0441 0.0012 -36.3765 1.96 0 
X2Z4 0 0.0012 0 1.96 1 

Variable Definition     
X1: TPR_D, X2: TPR_C, Z1: Map size, Z2: # of Enemy, Z3: # of Friend, Z4: Cost coefficient  
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acc ( ) ( , )y f x h x z ε= + +

1 2

    (3.4) 
2 2

1 2 1 2( ) 1.2385 0.0297 0.0366 0.7081 0.1025 0.001f x x x x x= − + − − − x x

2

 (3.5) 

1 2 3 4 1 1 1

1 3 1 4 2 1 2 2 2 3 2 4

( , ) 0.1066 0.0738 0.0276 0 0.1611 0.0849
            0.0683 +0 0.0019 0.0423 0.0441 0
h x z z z z z x z x z

x z x z x z x z x z x z
= − − + − +
− + + − −

 (3.6) 

As shown above, the X1X2, X2Z1, Z4 and its interactions with X1 and X2 are not 

statistically different than zero.  The assumption of the independence between detection 

and classification system might be the reason of no interaction between X1 and X2.  And 

the explanation of no interactive effect between X2 and Z1 might be same as the case of 

RPD in the cost approach.  Z4 is the factor of the cost coefficient and it does not work in 

the accuracy response approach due to no cost evaluation.  The model has the low R-

squared value of .4435 and this means the model does not describe a large portion of the 

variance in the response.   

67 



 

 

Figure 20: Surface, Contour and Overlay Plots for RPD Using the Label Accuracy Response of the 1st ROC Set 

As shown by figure 20, the higher total accuracy roughly happens at the middle of the 

mean model and the lower POE turns out at the northeast quadrat of the POE model.  Due 

to difficulty in interpretation of the POE function and low R-squared value, the 904th and 

1005th design points displayed on the overlay plot are selected as the solutions of RPD.  

The 904th point has higher response and POE than the 1005th point.  We can compare 

which one shows better performance at the confirmation experiment that is, better result 
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at the 904th means that mean model dominated selection is needed when we figure out 

overlay plot and vice versa.   

Confirmation Experiment for 1st ROC set 
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Test point Map size # of Enemy # of Friend Coefficient 
Center 450 18 18 [3 1 1 1 2] 

1/4 225 9 9 [2 1 1 1 2] 
3/4 675 27 27 [4 1 1 1 2] 

Out1 9000 360 360 [40 1 1 1 2] 
Out2 2000 10 70 [10 1 1 1 2] 

 
Figure 21: Notional Example of Design Space and the Table of Confirmation Experiments 

The confirmation experiment with regards to the 1st ROC set is conducted in different 

ROI surroundings: (1) the center point of the design, (2) one fourth point of the design, 

(3) three fourth point of the design and (4) two points out of the design.  The 

confirmation experiment for both responses is performed together and the values for each 

response are also reported together.   
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Table 11: The Confirmation Experiments Results of the 1st ROC Set 

Cost Response Type Method Type Comb # 
Center 1/4 3/4 Out1 Out2 

Ave_acc

LCDO & Taguchi 1704 32.04 14.95 50.28 1433.31 115.15 0.931 min Cost 
RPD 803 37.03 16.83 59.56 2543.79 111.88 0.928 

LCDO & Taguchi 1306 35.98 16.57 57.48 1962.89 143.57 0.924 
RPD1 904 35.56 16.01 57.51 2539.57 119.51 0.930 max Acc 
RPD2 1005 35.13 15.61 56.70 2457.91 129.76 0.930 

mean  222.24 109.49 336.54 5615.20 1013.80 0.507 
mean of the best 10%  41.63 19.76 64.20 1196.70 159.03 0.912 

 
The 1704th combination generally shows good result and it also has the maximum 

accuracy.  The values shaded blue show the best performance when we do the 

confirmation experiment with the solutions of each evaluation method for a given design 

point.  We can also see how the results are close to the mean and optimal values by 

looking at the last two rows of table 11.  In most cases, the values of blue are better than 

the mean of the best 10% and actually, they are close to the mean of the best 5%.  If we 

think about the accuracy, even though the threshold combination that had the maximum 

accuracy in the design points, it does not attain the biggest at the confirmation 

experiments.  But, rather, the point that has the smallest cost has the biggest accuracy at 

table 11.  In addition, it is hard to say that there is a difference between two solutions of 

RPD with a combined array of the accuracy response.   
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2nd ROC curve set 

The ROC curves for the CID system are generally determined by the quality of 

signals and the selection of the decision threshold [27].  If the 1st set of ROC curves has a 

low quality of signal and hence the region of intersection between the target probability 

distribution and the clutter probability distribution in the case of detector is relatively 

large, the 2nd ROC curve set comes up with high quality of signals.  Thus, we can expect 

improved ROC curve behaviors and those are demonstrated at figure 22.   

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CURVE for Detection and Classification Processes

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Detection

Classification

0 0.01 0.02 0.03 0.04 0.05
0.4

0.5

0.6

0.7

0.8

0.9

1
ROC CURVE for Detection and Classification Processes (FPR < 0.05)

False Positive Rate

T
ru

e 
P

os
iti

ve
 R

at
e

 

 

Detection

Classification

 

Figure 22: ROC Curves for 2nd Experiment Set 

As you see, the ROC curves for 2nd set are much better than previous ones in terms of 

their high TPR at the same FPR.  Right-hand side graph of figure 22 is used for this 

experiment and its range of x-axis (FPR) is (0, .05) for both curves.  Due to different 

ROC curves we may see very different results as compared with the 1st ROC set.   

The Cost Response Approach 

Table 12: The solutions of the cost response of the 2nd ROC set 

Method Comb # TPR_D TPR_C FPR_D FPR_C Cost S|N S 
LCDO 7930 0.9307 0.9661 0.015 0.04 11.4907 22.7413 
SN_L 7924 0.8981 0.9661 0.012 0.04 11.5961 22.5422 
RPD 9816 0.8261 0.9667 0.008 0.0495 12.9393 23.2914 
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In contrast with 1st ROC set of the cost response approach, three different 

solutions are estimated but there is still no big difference between the solution of LCDO 

and that of Taguchi method.  Again, the following tables and figures explain how we get 

the solution of RPD with a combined array.   

Table 13: The Regression Analysis Results of RPD Using the Cost Response of the 2nd ROC Set 

  DoF MS F P-value 
SS reg 56347668.2 17 3314568.7 58921.006 0 
SS res 8999699.296 159982 56.2544   

SSt 65347367.49 159999    
R^2 0.8623     

      
 Coefficient Std Error T T-crit P-value 

Intercept 26.0934 0.0784 332.7948 1.96 0 
X1 -1.0333 0.0974 -10.6117 1.96 0 
X2 -13.8853 0.0974 -142.5714 1.96 0 

X1^2 13.0009 0.0811 160.4053 1.96 0 
X2^2 0.5499 0.081 6.7892 1.96 0 
X1X2 -5.241 0.1022 -51.2999 1.96 0 

Z1 2.737 0.0482 56.7722 1.96 0 
Z2 18.7106 0.0482 388.1022 1.96 0 
Z3 4.7785 0.0482 99.1165 1.96 0 
Z4 11.9501 0.0482 247.8725 1.96 0 

X1Z1 12.0206 0.0438 274.546 1.96 0 
X1Z2 -3.7072 0.0438 -84.6722 1.96 0 
X1Z3 -5.2242 0.0438 -119.3194 1.96 0 
X1Z4 1.4096 0.0438 32.1948 1.96 0 
X2Z1 -0.0023 0.0438 -0.0531 1.96 0.9577 
X2Z2 -13.5045 0.0438 -308.6534 1.96 0 
X2Z3 0.4343 0.0438 9.9273 1.96 0 
X2Z4 -11.5835 0.0438 -264.7483 1.96 0 

Variable Definition     
X1: TPR_D, X2: TPR_C, Z1: Map size, Z2: # of Enemy, Z3: # of Friend, Z4: Cost coefficient  

  
 2 2

1 2 1 2( ) 26.09 1.03 13.89 13 0.55 5.24 1 2f x x x x x x= − − − − − x

2

 (3.8) 

 1 2 3 4 1 1 1

1 3 1 4 2 1 2 2 2 3 2 4

( , ) 2.746 18.71 4.78 11.95 12.02 3.71
            5.22 +1.41 0 13.5 0.43 11.58
h x z z z z z x z x z

x z x z x z x z x z x
= + + + − −
− + − + − z

 (3.9) 
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As shown above regression results, the interaction between the TPR of the classification 

(X2) and the map size (Z1) is the only one that does not influence to the model.  The R-

squared value of .8623 is acceptable.   

 

Figure 23: Surface, Contour and Overlay Plots for RPD Using the Cost Response of the 2nd ROC Set 

Again, when the maximum values of FPR for both are .05, the TPR of the detection is 1 

and that of the classification is .967.  The solution of the RPD with a combined array 
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method is appeared at overlay plot with lower mean and POE value and it is the 9816th 

combination.   

The Label Accuracy Response Approach 

Table 14: The Solutions of the Label Accuracy Response of the 2nd ROC Set 

 Method Comb # TPR_D TPR_C FPR_D FPR_C Sum of Acc S|N L 
LCDO 5253 0.989 0.9554 0.0265 0.0265 0.9686 39.7228 
SN_L 5253 0.989 0.9554 0.0265 0.0265 0.9686 39.7228 
RPD1 9347 0.9795 0.9667 0.0235 0.047 0.9675 39.7117 
RPD2 9992 1 0.9667 0.046 0.05 0.9551 39.6007 

 
We get same solution, 5253rd combination for LCDO and Taguchi method, and 

two slightly different answers for RPD with a combined array.  However, the location 

between solutions is not close like those of 1st ROC set.   

Table 15: The Regression Analysis Results of RPD Using the Label Accuracy Response of the 2nd ROC Set 

    DoF MS F P-value 
SS reg 397.9119 17 23.4066 47894.4 0 
SS res 78.1852 159982 0.0005   

SSt 476.0971 159999    
R^2 0.8358         

      
  Coefficient Std Error T T-crit P-value 

Intercept 0.9043 0.0002 3912.9892 1.96 0 
X1 0.0491 0.0003 171.1542 1.96 0 
X2 0.0242 0.0003 84.4045 1.96 0 

X1^2 -0.0194 0.0002 -81.0572 1.96 0 
X2^2 -0.0029 0.0002 -12.278 1.96 0 
X1X2 0.0087 0.0003 28.944 1.96 0 

Z1 0.0822 0.0001 578.3533 1.96 0 
Z2 -0.0518 0.0001 -364.6208 1.96 0 
Z3 -0.0263 0.0001 -185.1719 1.96 0 
Z4 0 0.0001 0 1.96 1 

X1Z1 -0.058 0.0001 -449.4661 1.96 0 
X1Z2 0.0264 0.0001 204.5851 1.96 0 
X1Z3 0.0287 0.0001 222.6852 1.96 0 
X1Z4 0 0.0001 0 1.96 1 
X2Z1 -0.0236 0.0001 -182.6671 1.96 0 
X2Z2 0.0248 0.0001 192.0206 1.96 0 
X2Z3 -0.0024 0.0001 -18.3741 1.96 0 
X2Z4 0 0.0001 0 1.96 1 

Variable Definition     
X1: TPR_D, X2: TPR_C, Z1: Map size, Z2: # o  Enemy, Z3: # of Friend, Z4: Cost coefficient f 
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2 2
1 2 1 2( ) 0.9043 0.0491 0.0242 0.0194 0.0029 0.0087 1 2f x x x x x= + + − − − x x

2

     (3.9) 

 1 2 3 4 1 1 1

1 3 1 4 2 1 2 2 2 3 2 4

( , ) 0.0822 0.0518 0.0263 0 0.058 0.0264
            0.0287 +0 0.0236 0.0248 0.0024 0
h x z z z z z x z x z

x z x z x z x z x z
= − − + − +

− + − + x z
 (3.10) 

The regression result for this experiment illustrates that the cost coefficient factor (Z4) 

and its interactions with controllable factors are redundant since the response is the 

accuracy.  And the R-squared value of .8358 is suitable.   

 

Figure 24: Surface, Contour and Overlay Plots for RPD Using the Label Accuracy Response of the 2nd ROC Set 
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By comparing mean and POE plots, we catch the points having high accuracy and low 

POE.  However, the mean model possibly does not represent real behavior of controllable 

factors because, the regression tried to give us good fit employing all repressors.  The 

following figure constructed from the crossed array design with mean accuracy as its 

response and it shows the difference that the maximum accuracy does not happen at the 

exact top of both axes (controllable factors) of the design space.   

 
Figure 25: Average Accuracy across All Design Points from the Crossed Array 

Confirmation experiment for 2nd set 

Table 16: The Confirmation Experiments Results of the 2nd ROC Set 

Cost Response Type Method Type Comb # 
Center 1/4 3/4 Out1 Out2 

Ave_acc

LCDO 7930 9.28 3.57 15.68 638.04 38.56 0.979 
Taguchi 7924 9.26 3.50 15.65 621.70 35.24 0.979 min cost 

RPD 9816 10.27 4.08 16.85 602.55 33.42 0.978 
LCDO & Taguchi 5253 12.24 4.86 20.54 868.87 56.27 0.972 

RPD1 9347 11.18 4.37 18.68 696.44 51.44 0.974 max Acc 
RPD2 9992 19.95 8.76 31.66 871.42 93.21 0.954 

mean  17.66 7.08 30.10 1762.18 65.12 0.967 
mean of the best 10%  9.75 3.64 16.46 628.70 34.73 0.978 
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The Confirmation experiment for this set is performed on the points of figure 21 

and the results are presented at table 16.  The 7924th combination shows good results in 

the design space and the 9816th combination operates well out of design space.  Again, 

the values of blue display the best performance for a given design point.  The last two 

rows of table 16 helps to understand how the results are close to the mean and optimal 

values.  In all cases, the values shaded blue are better than the mean of the best 10%.   

Like the 1st ROC set, the biggest accuracy occurs around the points that make the 

smallest costs.  There is something we need to know in this research’s confirmation 

experiments.  We made one table for the result but, in the case of cost response, we may 

focus on the cost values and just refer accuracy value in the case of accuracy response, it 

may be vice versa.   

Summary of experiments results 

In this Chapter, the experiments were carried out using two different ROC curve 

sets with the CID model and three output analysis techniques as explained in the previous 

Chapter.  Further, the confirmation experiments were accomplished at the optimal 

parameters obtained from three techniques for each response.  The summary of 

experiments and results are follows: 

• In the case of the cost response, the solutions from LCDO and the Taguchi 

method worked well within the design space in terms of the performance of the 

confirmation experiments.  The solution from RPD with a combined array gave us 

lower cost and higher accuracy outside of the design space.   
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• In the case of the accuracy response, the performances were slightly enhanced due 

to the solution of the RPD with a combined array in both sets.   

• The parameters that achieved the minimum cost were very close to the parameters 

that yielded the maximum accuracy.   

• The accuracy approach is more sensitive than the cost approach with respect to 

the design space. The solutions for the accuracy response did not show the largest 

average accuracy in the last column of table 16.  On the other hand, the solutions 

from the cost approach showed the largest accuracy along with the smallest cost. 

These results show that the parameters that yield the minimum cost also provide 

maximum accuracy.  The cost response employed in this study is mainly comprised of 

four critical error rates (even though it has one more component, the TPR of the system) 

located in the off-diagonals of the CM; however, the accuracy response is the sum of the 

proportion of the diagonals.  Thus, if we try to minimize the cost it automatically 

maximizes accuracy and vice versa.  Throughout the results of confirmation experiments 

we can see this tendency.   
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V. Summary and Conclusions 

 
 

Many studies related to CID have the same goal: to maximize combat/mission 

effectiveness while reducing total casualties due to enemy action and fratricide [5:1].  

The objectives of this thesis were: (1) the modeling of a CID situation and (2) obtaining 

robust and controllable input variable settings.  Considering the features of CID, input 

variables were defined as controllable and uncontrollable and the confusion matrices that 

are used in ROC theory were adapted to controllable factors.   

For CID modeling this research employed the following assumptions: (1) each 

detector and classifier occupies a predetermined ROC curve, (2) a neutral force and 

civilian are in the clutter, (3) there are three characteristics in a virtual ROI such as: 

enemy object, a friendly object, and clutter, (4) all entities have to be declared one of 

these and no entity can be non-declared.   

All results of the CID system are summarized by a posterior CM.  Throughout the 

posterior CM analysis, the responses that the simulator wants to gather can be obtained.  

This study has two responses, cost and accuracy.  The cost is evaluated by multiplying 

error rates of the CM and their cost coefficients and the accuracy is calculated by 

summing types of accuracies in the CM with respect to enemy, friend, and clutter. 

To find optimal parameters for each response, three evaluation techniques were 

applied: (1) LCDO, (2) Taguchi’s S|N ratio method, and (3) RPD with a combined array.  

For (1) and (2), the crossed array design that has controllable factors as its inner array and 

uncontrollable factors as its outer array was employed and for (3), obviously, the 

79 



 

combined array design was used.  The solutions of (1) and (2) are almost the same but 

that of (3) is different in two experiment sets. 

We used confirmation experiments to compare the performance of each solution 

and the results were: (1) LCDO and the Taguchi method give us better output in the cost 

response and RPD with a combined array shows a slightly better performance in accuracy 

response, (2) in general LCDO and the Taguchi method can be applied within the design 

space and RPD with a combined array can be operated out of the design space, (3) the 

parameters that make the minimum cost yield the near maximum accuracy and (4) the 

accuracy approach is more sensitive than the cost approach with regards to the design 

space.   
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Figure 26: The Movement of the Optimal Points for Each Technique between Two ROC Sets 

The optimal points for both detector and classifier in figure 26 moved to the 

points that allow higher TPR with lower FPR (north-west corner); particularly, the TPR 

of the detector for all evaluation methods increased significantly between the two ROC 

sets.  This may represent the importance of finding a small number of objects in a huge 

ROI.  Comparing two graphs in figure 26, the RPD with a combined array technique 
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generally has a strong tendency of keeping lower FPR.  Thus we can expect relatively 

lower error cost when we employ the RPD method since the error cost is primarily 

produced by a FPR, i.e. the FPR that triggers a fratricide or incorrect detection of a clutter.   

Table 17: The Best Performance Values of the Confirmation Experiments for Each ROC Set 

Cost ROC Set Type 
Center 1/4 3/4 Out1 Out2 

Ave_acc 

1st set 32.04 14.95 50.28 1433.31 111.88 0.931 
2nd set 9.26 3.50 15.65 602.55 33.42 0.979 

 
Table 17 is a table that reorganizes the best values of the confirmation 

experiments for each ROC set.  As shown, the improvement of ROC curve behaviors in 

figure 26 induces a large decrease in the cost and a small increase in the accuracy.  Even 

though the accuracy only increased 5% between the two ROC sets, the cost decreased 

more than 3.3 times.  This implies a need for improvement in the ROC curves, the 

performance of the detector and classifier, to increase accuracy and decrease error cost.   

In conclusion, if we consider the diverse characteristics of CID, the simulator 

needs to focus on finding the parameters that yield the maximum accuracy value.  This is 

because minimum cost is accomplished at the point of the maximum accuracy and the 

cost approach is very subjective depending on the decision maker and the battlefield 

situation.  In addition, the most preferable evaluation method is RPD with a combined 

array due to its superior performance outside of the design space.  In the final analysis, 

we need a detector/classifier pair that has good performance to minimize error cost and 

maximize label accuracy.   

For further research, we can apply accuracy priorities or mission priorities before 

we determine the subjective weights of the responses.  Though this effort simplifies the 

CID model by making several simplifying assumptions, we may add a non-declaration 
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choice [17], a cooperative identification process, a decision and firing stage, or, perhaps, 

a continuous variable associated with time to the current CID model.  In addition, by 

considering the signal and the decision factors that decide the quality of the ROC curve in 

ROC theory [27], we can approach this problem in a different and inclusive manner.   
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APPENDIX A: MATLAB® CODE 

 
A. CID Simulation 
 
% This Thesis Code is made by the author. 
 
clc; 
close all; 
clear all; 
tic 
 
[TagforReg,Tag]=combarray(); 
 
for r=1:size(Tag,1) %for each row in Design matrix  =================================== 
    area = zeros(Tag(r,3),1); 
 
    for i=1:Tag(r,4) 
        area(i,1)=1; 
    end 
    area=sortrows(area); 
    for i=1:Tag(r,5) 
        area(i,1)=2; 
    end 
 
    if Tag(r,8)==1 
        cost=[1 1 1 1 2]'; 
    else 
        cost=[5 1 1 1 2]'; 
    end 
 
    d_table = []; %template for detection, 2x2 
    c_table = []; %template for classification, 2x3 
 
    d_table = [Tag(r,1), Tag(r,6); 1-Tag(r,1) 1-Tag(r,6)]; 
    c_table = [Tag(r,2), Tag(r,7) .5; 1-Tag(r,2) 1-Tag(r,7) .5; 0 0 0]; 
 
 
%%%%%% Detection process %%%%%% 
 
    output1 = [];       %for result of detection process 
    output2 = [];       %for result of classification process 
 
    column_d = [3 0];   %for detection 0 means nothing, 3 means something 
    column_c = [1 2 0]; %for classification 1 means enemy, 2 means friend 
 
    prob = []; 
    [I,J] = size(area); 
    N = 100;    
    cum_confusion = zeros(3); 
 
    for n = 1:N 
        confusion = zeros(3); 
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        for i = 1:I 
            for j = 1:J 
                if area(i,j) ~= 0 
                    prob = d_table(:,1); 
                    [numberchoices,cols] = size(prob); 
 
                    out=zeros(2,1); 
                    out(1,1) = prob(1); 
 
                    for k = 2:numberchoices 
                        out(k,1) = prob(k) + out(k-1,1); %cumulation 
                    end 
 
                    check = 0; 
                    index = 1; 
 
                    while check == 0 
                        if out(index,1) >= rand(1)  %comparing threshold with random number 
                            output1(i,j) = column_d(index); 
                            check = 1; 
                        else 
                            index = index + 1; 
                        end 
                    end 
 
                else 
                    prob = d_table(:,2); 
                    [numberchoices,cols] = size(prob); 
 
                    out=zeros(2,1); 
                    out(1,1) = prob(1); 
 
                    for k = 2:numberchoices 
                        out(k,1) = prob(k) + out(k-1,1); 
                    end 
 
                    check = 0; 
                    index = 1; 
                    while check == 0 
                        if out(index,1) >= rand(1) 
                            output1(i,j) = column_d(index); 
                            check = 1; 
                        else 
                            index = index + 1; 
                        end 
                    end 
                end 
 
                if output1(i,j) == 0 
 
                    %confusion matrix for detection 
                    if area(i,j)==0 
                        confusion(3,3) = confusion(3,3) + 1; 
                        output2(i,j) = 0; 
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                    end 
                    if area(i,j)==1 
                        confusion(3,1) = confusion(3,1) + 1; 
                        output2(i,j) = 5; 
                    end 
                    if area(i,j)==2 
                        confusion(3,2) = confusion(3,2) + 1; 
                        output2(i,j) = 55; 
                    end 
 
 
%%%%%%Classification process %%%%%% 
 
                elseif output1(i,j) ~= 0 
 
                    if area(i,j) == 1 
 
                        prob = c_table(:,1); 
                        [numberchoices,cols] = size(prob); 
                        gen_prob = rand(1); 
                        out(1,1) = prob(1); 
 
                        for k = 2:numberchoices 
                            out(k,1) = prob(k) + out(k-1,1); 
                        end 
 
                        check = 0; 
                        index = 1; 
                        while check == 0 
                            if out(index,1) >= gen_prob 
                                output2(i,j) = column_c(index); 
                                check = 1; 
                            else 
                                index = index + 1; 
                            end 
                        end 
 
                    elseif area(i,j) == 2 
 
                        prob = c_table(:,2); 
                        [numberchoices,cols] = size(prob); 
                        out(1,1) = prob(1); 
 
                        for k = 2:numberchoices 
                            out(k,1) = prob(k) + out(k-1,1); 
                        end 
 
                        check = 0; 
                        index = 1; 
                        while check == 0 
                            if out(index,1) >= rand(1) 
                                output2(i,j) = column_c(index); 
                                check = 1; 
                            else 
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                                index = index + 1; 
                            end 
                        end 
 
                    elseif area(i,j) == 0 
 
                        prob = c_table(:,3); 
                        [numberchoices,cols] = size(prob); 
                        out(1,1) = prob(1); 
 
                        for k = 2:numberchoices 
                            out(k,1) = prob(k) + out(k-1,1); 
                        end 
 
                        check = 0; 
                        index = 1; 
                        while check == 0 
                            if out(index,1) >= rand(1) 
                                output2(i,j) = column_c(index); 
                                check = 1; 
                            else 
                                index = index + 1; 
                            end 
                        end 
                    end 
 
                    %confusion matrix for detection 
                    if output2(i,j) == 1 
                        if area(i,j) == 1 
                            confusion(1,1) = confusion(1,1) + 1; 
                        elseif area(i,j) == 2 
                            confusion(1,2) = confusion(1,2) + 1; 
                        elseif area(i,j) == 0 
                            confusion(1,3) = confusion(1,3) + 1; 
                        end 
                    elseif output2(i,j) == 2 
                        if area(i,j) == 1 
                            confusion(2,1) = confusion(2,1) + 1; 
                        elseif area(i,j) == 2 
                            confusion(2,2) = confusion(2,2) + 1; 
                        elseif area(i,j) == 0 
                            confusion(2,3) = confusion(2,3) + 1; 
                        end 
                    end 
                end 
            end 
        end 
        cum_confusion = cum_confusion + confusion; 
    end 
    CM = cum_confusion / N; 
 
    TPR(r,1) = CM(1,1)/sum(CM(:,1)); % vertical analysis P("E"|E) 
    E1(r,1) = CM(1,2)/sum(CM(1,:)); % horizontal analysis P(F|"E") 
    E2(r,1) = CM(2,1)/sum(CM(2,:)); % horizontal analysis P(E|"F") 
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    E3(r,1) = sum(CM(1:2,3))/sum(sum(CM(1:2,:))); % horizontal analysis P(C|"E" or "F") 
    E4(r,1) = sum(CM(3,1:2))/sum(CM(3,:)); % horizontal analysis P(E or F | "C") 
 
    Cost(r,1) = cost(1,1)*CM(2,1)+cost(2,1)*CM(1,2)+cost(3,1)*(CM(1,3)+CM(2,3)) 
  +cost(4,1)*(CM(3,1)+CM(3,2))-cost(5,1)*TPR(r,1); 
 
    Accuracy(r,1) = CM(1,1)/sum(sum(CM)) + CM(2,2)/sum(sum(CM)) + CM(3,3)/sum(sum(CM)); 
 
end 
toc 
clear I J i j k r numberchoices howmany prob column_c column_d 
 
 
 
B. Sub-Function – Generate a Design Matrix 
 
% This Thesis Code is made by the author. 
 

function [TagforReg,Tag] = combarray() 
 
clear all 
clc; 
 
  load 'new_threshold.mat' threshold_d; 
  load 'new_threshold.mat' threshold_c; 
 
                                      
  % load 'threshold_mod.mat'; (obtained from RBF) 
                                    
D = fullfact([100 100 2 2 2 2]); 
 
avector = threshold_d(:,2); 
bvector = threshold_c(:,2); 
cvector = [100 1000]'; %Map size 
dvector = [5 40]'; %number of enemy 
evector = [5 40]'; %number of friend 
fvector = threshold_d(:,1); %FPR for Detection 
gvector = threshold_c(:,1); %FPR for Classification 
F = D(:,1); 
G = D(:,2); 
             
D = [D,F,G]; 
 
for i=1:size(D,1) %sets with test values 
    D(i,1)=avector(D(i,1),1); 
    D(i,2)=bvector(D(i,2),1); 
    D(i,3)=cvector(D(i,3),1); 
    D(i,4)=dvector(D(i,4),1); 
    D(i,5)=evector(D(i,5),1); 
    D(i,7)=fvector(D(i,7),1); 
    D(i,8)=gvector(D(i,8),1);                                
end 
 

87 



 

E=D; 
 
for i = 1:size(E,2) 
    big = max(E(:,i)); 
    small = min(E(:,i)); 
    for j = 1:size(E,1); 
        E(j,i) = ((E(j,i)- small)/(big-small))*2 - 1; 
    end 
end 
 
H = ones(size(E,1),1); 
E = [H,E]; 
 
Xblock=E(:,1:3); 
Xblock=[Xblock,E(:,2).^2, E(:,3).^2, E(:,2).*E(:,3)]; 
 
Zblock=E(:,4:7); 
XZblock=[E(:,2).*E(:,4),E(:,2).*E(:,5),E(:,2).*E(:,6),E(:,2).*E(:,7),E(:,3).*E(:,4),E(:,3).*E(:,5),E(:,3).*E(:,6
),E(:,3).*E(:,7)]; 
E = [Xblock, Zblock, XZblock]; 
 
X = D; 
Y = E; 
 
Tag = [D(:,1:5),D(:,7:8),D(:,6)]; 
TagforReg = E; 
 
end 
 
 
 
C. Regression 
 
% This Thesis Code is provided by Todd Burnworth, after that... 
% Capt Taeho Kim modified for his analysis. 
 
%inputs are A, Response, and Vnames                             <----------user input 
%it doesnn't matter if A has leading ones 
 
clc; 
clear Bhat Yhat e SSres MSres SSreg MSreg SSt Fo Fstat alpha C H X r d;  
clear ePRESS Si2 Rstud t nvector groupnum Ybarvector SSpe ANOVA Xhatp;  
clear Yhatp U Z xi xerror yerror Tcrit BoxCoxusedlamda BoxCoxusedlog; 
clear leveragepoints Cooks DFFITS Cooksinfluence DFFITSinfluence; 
clear DFBETASinfluence DFBETAS DFBETAcountries V R Z Rstud ePRESS; 
clear Yhata PRESS; 
 
%%%%%%%%%%%%%%%%%%Switches 
    GRAPHS=1;% 0 is off                                        <----------user input 
    BOXCOX=0;% 0 is off                                        <----------user input 
    ALLREG=0;% 0 is off                                        <----------user input 
    LofFit=0;% 0 is off                                        <----------user input 
    Warnng=0;% 0 is off                                        <----------user input 
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    GENLSQ=0;% 0 is off                                        <----------user input 
 
%%%%%%%%add a column of ones to A if it needs one and get sizes of A (n by p) 
    Y=Response; 
    n=size(A,1);  
    if A(:,1)~=ones(n,1) 
        A=[ones(n,1) A]; 
    end 
    p=size(A,2); 
    globalp=p; 
    Filter = int8(ones(1,p)); 
     
    %Filter out certain regressors - uncomment to "eliminate" 
%     Filter(1,1)=0;% filter B0                                 <----------user input* 
%     Filter(1,2)=0;% filter B1                                 <----------user input 
%     Filter(1,3)=0;% filter B2                                 <----------user input* 
%     Filter(1,4)=0;% filter B3                                 <----------user input* 
%     Filter(1,5)=0;% filter B4                                 <----------user input 
%     Filter(1,6)=0;% filter B5                                 <----------user input* 
%     Filter(1,7)=0;% filter B6                                 <----------user input 
%     Filter(1,8)=0;% filter B7                                 <----------user input 
 
    X=A; 
    for i=p:-1:1 
        if Filter(1,i)==0 
            X(:,i) = []; 
        end 
    end 
    p=size(X,2); 
     
    explist=ones(1,p);    
    Xform=int8(zeros(1,p)); 
    %Pick regressors to transform - uncomment to Xform via Box-Tidwell 
%%%%%%%%%%%%%Do not transform x0 via Box Tidwell                   
%          Xform(1,2)=1;% Xforms x1 via Box-Tidwell                  <----------user input 
%          Xform(1,3)=1;% Xforms x2 via Box-Tidwell                  <----------user input 
%          Xform(1,4)=1;% Xforms x3 via Box-Tidwell                  <----------user input 
%          Xform(1,5)=1;% Xforms x4 via Box-Tidwell                  <----------user input 
%          Xform(1,6)=1;% Xforms x5 via Box-Tidwell                  <----------user input 
%          Xform(1,7)=1;% Xforms x6 via Box-Tidwell                  <----------user input 
%          Xform(1,8)=1;% Xforms x7 via Box-Tidwell                  <----------user input     
     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
if Warnng==0 
    warning off; 
end 
 
%%%%%%%%%%%%%%%%Least Squares 
if GENLSQ==1 
    Save=X; 
    V=cov(X'); 
    invV=(V)^-1; 
    Bhatz=((X'*invV*X)^-1)*X'*invV*Y; 
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    K=(V)^.5;%  <--------- if covariances are negative, sqrts will be imaginary. 
    Bee=((K)^-1)*X; 
    bigZ=Bee*Bhatz; % <-------------also imaginary 
 
    SSresz=bigZ'*bigZ-Bhatz'*Bee'*bigZ; 
    MSresz=SSresz/(n-p); 
 
    SSregz=Bhatz'*Bee'*bigZ; 
    MSregz=SSregz/(p-1); 
 
    SStz=bigZ'*bigZ; 
 
    %Calculate F statistic for model 
    alpha=.90; 
    Foz=MSregz/MSresz; 
    Fstatz=finv(alpha,p-1,n-p); 
    Fpvaluez=1-fcdf(Foz,p-1,n-p); 
     
    %R-squared 
    R2z=SSregz/SStz; 
    R2adjz=1-(SSresz/(n-p))/(SStz/(n-1)); 
     
    %Build table (see pg 80 in book for explanation) 
    glmANOVA=zeros(4,6); 
    glmANOVA(1,1)=SSregz;  glmANOVA(1,2)=p-1; 
    glmANOVA(1,3)=MSregz; 
    glmANOVA(1,4)=Foz; glmANOVA(1,5)=Fpvaluez; 
    glmANOVA(2,1)=SSresz;  glmANOVA(2,2)=n-p; 
    glmANOVA(2,3)=MSresz; 
    glmANOVA(3,1)=SStz;    glmANOVA(3,2)=n-1; 
    glmANOVA(4,1)=R2z;     glmANOVA(4,2)=R2adjz;    
 
 
    clear  invV K Bee; 
    X=Save; 
end 
%%%%%%%%%%%%%%%%transformations on X -BoxTidwell 
    alpha=.9;%                                                 <----------user input 
    y=Y; 
     
    leading=ones(n,1); 
    for i=1:p 
       
        if Xform(1,i)==1 
            x=[leading, X(:,i)]; 
            px=size(x,2); 
            a=1; 
            olda=10; 
             
            while abs(olda-a)>.00005 
                %step 1 
                bhat=((x'*x)\eye(px))*x'*y;     
                yhat=x*bhat; 
                C=(x'*x)\eye(px); 
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                SSres=y'*y-bhat'*x'*y; 
                MSres=SSres/(n-px); 
                To=abs(bhat(px,1)/sqrt(MSres*C(px,px))); 
                Tcrit=tinv((alpha+(1-alpha)/2),n-px); 
  
                %step 2 
                w=x(:,px).*log(x(:,px)); 
                xw=[x,w]; 
             
                %step 3 
                bhatw=((xw'*xw)\eye(px+1))*xw'*y; 
                yhatw=xw*bhatw; 
             
                %step 4 
                Cx=(xw'*xw)\eye(px+1); 
                SSresx=y'*y-bhatw'*xw'*y; 
                MSresx=SSresx/(n-(px+1)); 
                 
                Tox=abs(bhatw(px+1,1)/sqrt(MSresx*Cx(px+1,px+1))); 
                Tcritx=tinv((alpha+(1-alpha)/2),n-(px+1)); 
   
                %step 5               
                if To>Tcrit && Tox>Tcritx 
                    a=bhatw(px+1,1)/bhat(px,1)+a; 
                else 
                    olda=a; 
                end 
          
                %step 6 
                x(:,px)=x(:,px).^a; 
 
            end 
            explist(1,i)=a; 
        end 
    end 
 
    for i=1:p 
    explist(1,i)=round(explist(1,i)*2)/2; 
 
        if explist(1,i)>2 
            explist(1,i)=2; 
        end         
        if explist(1,i)<(-2) 
            explist(1,i)=(-2); 
        end 
    end 
 
    for i=1:p 
        X(:,i)=X(:,i).^explist(1,i); 
    end 
 
clear x y olda To Tcrit Tox Tcritx w Cx bhatw; 
clear MSresx SSresx MSres SSres yhatw bhat a xw yhat; 
clear Xform leading %explist; 
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%%%%%%%%%%%%%%%%transformations on Y -BoxCox 
    if BOXCOX==1 
        lamda=linspace(-2,2,21); 
        lp=size(lamda,2); 
         
        ydot=exp((1/n)*sum(log(Y))); 
         
        for i=1:lp 
            if lamda(1,i)~=0 
                ytemp=(Y.^lamda(1,i)-1)./(lamda(1,i).*ydot^(lamda(1,i)-1)); 
            else 
                ytemp=ydot.*log(Y); 
            end 
            bhat=((X'*X)\eye(p))*X'*ytemp; 
            yhat=X*bhat; 
            C=inv(X'*X); 
            SSreslamda(1,i)=ytemp'*ytemp-bhat'*X'*ytemp; 
        end 
 
        lmin=min(SSreslamda); 
        for i=1:lp 
            if SSreslamda(1,i)==lmin 
                location=i; 
            end 
        end 
        if lmin~=0 
            Y=(Y.^lamda(1,location)-1)/lamda(1,location); 
            BoxCoxusedlamda=lamda(1,location) 
        else 
            Y=log(Y); 
            BoxCoxusedlog=1 
        end 
        if GRAPHS==1 
        figure(1) 
        scatter(lamda,SSreslamda,'or', 'MarkerFaceColor','c');  
        xlabel('Power Transformation Parameter Lamda');  
        ylabel('SS_r_e_s'); title('SS_r_e_s vs. Lambda'); 
        end 
    end 
clear lp lmin ytemp location bhat yhat SSreslamda lamda ydot; 
 
%%%%%%%%%%%%%%%fit model   
    Bhat=((X'*X)\eye(p))*X'*Y;     
    Yhat=X*Bhat; 
 
%%%%%%%%%%%%All possible regressions (p counts the intercept) 
    if ALLREG==1 
        clear All Nines Btemp mm nn U pall Bhata; 
       
        AllReg=zeros(1,p); 
 
        for i=1:p 
            cmb=combntns(1:p,i); 
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            mm=size(cmb,1); 
            nn=size(cmb,2); 
            Btemp=zeros(mm,p); 
            for j=1:mm 
                for k=1:nn 
                    Btemp(j,cmb(j,k))=1; 
                end 
            end 
            AllReg=[AllReg;Btemp]; 
        end 
 
        clear mm nn; 
        mm=size(AllReg,1); 
        nn=size(AllReg,2); 
 
        U=X; %U holds the original X 
        for i=1:mm 
            for j=nn:-1:1 
                if AllReg(i,j)==0 
                    X(:,j) = []; 
                end 
            end 
             
            pall=size(X,2); 
            Bhata=((X'*X)\eye(pall))*X'*Y; 
            Yhata=X*Bhata; 
             e=Y-Yhata; 
             H=X*((X'*X)\eye(pall))*X'; 
                for s=1:n 
                    ePRESS(s,1)=(e(s,1)/(1-H(s,s)))^2; 
                end 
             
            All(i,1)=Bhata'*X'*Y -(Y'*ones(n,1))^2/n;              %SSreg 
            All(i,2)=Y'*Y-Bhata'*X'*Y;                             %SSres 
            All(i,3)=All(i,1)+All(i,2);                            %SSt 
            All(i,4)=All(i,1)/All(i,3);                            %R2 
            All(i,5)=1-(All(i,2)/(n-pall))/(All(i,3)/(n-1));       %R2adj 
            All(i,6)=sum(ePRESS);                                  %PRESS 
             
            X=U; 
        end 
        X=U;  %reset X  
        
        numrgs=sum(AllReg')'; 
        tempM=ones(1,6); 
        PandR2s=zeros(1,3); 
         
        for i=1:p 
            k=1; 
            for j=1:mm 
                if numrgs(j,1)==i 
                    tempM(k,:)=All(j,:); 
                    k=k+1; 
                end 
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            end  
                pickbiggest=max(tempM ,[] ,1); 
                PandR2s(i,1)=i;                %the # of parameters used 
                PandR2s(i,2)=pickbiggest(1,4); %R2 
                PandR2s(i,3)=pickbiggest(1,5); %R2adj            
        end 
         
        if GRAPHS==1 
        figure(2) 
        plot(PandR2s(:,1),PandR2s(:,2),'r:o') 
        hold on 
        plot(PandR2s(:,1),PandR2s(:,3),'b:+') 
        hold off 
        xlabel('Number of Regression Coeficients');  
        ylabel('R^2'); title('R^2 vs. Number of Regression Coefficients'); 
        legend('R^2','R^2 Adj.',2); 
        end 
         
        Nines=ones(mm,1)*9999999;  
        All=[AllReg,Nines,All];    
    else 
        clear All; 
    end 
    clear nn mm nopt i j k Bhata Nines U pall cmb AllReg Btemp numrgs tempM;  
    clear pickbiggest PandR2s; 
 
%%%%%%%%%%%%%%%%%%%perform ANOVA 
    alpha=.95;%                                                 <----------user input 
     
    C=(X'*X)\eye(p); 
 
    SSres=Y'*Y-Bhat'*X'*Y; 
    MSres=SSres/(n-p); 
 
    SSreg=Bhat'*X'*Y-(Y'*ones(n,1))^2/n; 
    MSreg=SSreg/(p-1); 
 
    SSt=SSreg+SSres; 
     
    %Calculate F statistic for model 
    Fo=MSreg/MSres; 
    Fstat=finv(alpha,p-1,n-p); 
    Fpvalue=1-fcdf(Fo,p-1,n-p); 
     
    %Perform marginal T test for each Bhat 
    for i=1:p 
        To(i,1)=Bhat(i,1)/sqrt(MSres*C(i,i)); 
        StdErr(i,1)=sqrt(MSres*C(i,i)); 
        Tcrit(i,1)=tinv((alpha+(1-alpha)/2),n-p); 
        Tpvalue(i,1)=2*(1-tcdf(abs(To(i,1)),n-p)); 
    end 
     
    %R-squared 
    R2=SSreg/SSt; 
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    R2adj=1-(SSres/(n-p))/(SSt/(n-1)); 
     
    %Multicollinearity 
%    Z=X; 
%    Z(:,1)=[]; 
 
%    invR=corr(Z)\eye(p-1); 
%     VIF=zeros(p,1); 
%     for i=1:p-1 
%         VIF(i+1,1)= invR(i,i); 
%     end 
     
     
     
    for i=1:p 
        CIforBhat(i,1)=Bhat(i,1)-tinv((alpha+(1-alpha)/2),n-p)*sqrt(MSres*C(i,i)); 
        CIforBhat(i,2)=Bhat(i,1); 
        CIforBhat(i,3)=Bhat(i,1)+tinv((alpha+(1-alpha)/2),n-p)*sqrt(MSres*C(i,i)); 
    end 
     
    %Build table (see pg 80 in book for explanation) 
    ANOVA=zeros(5+p,6); 
    ANOVA(1,1)=SSreg;  ANOVA(1,2)=p-1;    ANOVA(1,3)=MSreg;  ANOVA(1,4)=Fo; 
ANOVA(1,5)=Fpvalue; 
    ANOVA(2,1)=SSres;  ANOVA(2,2)=n-p;    ANOVA(2,3)=MSres; 
    ANOVA(3,1)=SSt;    ANOVA(3,2)=n-1; 
    ANOVA(4,1)=R2;     ANOVA(4,2)=R2adj; 
    for i=1:p 
        ANOVA(5+i,1)=Bhat(i,1);  
        ANOVA(5+i,2)=StdErr(i,1);  
        ANOVA(5+i,3)=To(i,1);  
        ANOVA(5+i,4)=Tcrit(i,1);   
        ANOVA(5+i,5)=Tpvalue(i,1);    
%        ANOVA(5+i,6)=VIF(i,1); 
    end 
 
 
clear n p Filter Si2 SSres MSres SSreg MSreg SSt Fo Fstat ePRESS i r d t; 
clear alpha disp residuals H Fpvalue C R2 R2adj dfssres dfsspe dfsslof; 
clear nvector ttlvector Ybarvector m j N groupnum counter lofFo e; 
clear lofFpvalue SSlof SSpe StdErr To Tstat Tpvalue Bhat Rstud I VIF;  
clear invR Tcrit X LofFit ALLREG BOXCOX GRAPHS globalp Warnng jvector; 
clear DFFITS Cooks GENLSQ Foz Fpvaluez SStz SSresz SSregz MSresz MSregz; 
clear Yhata Bhata Fstatz R2z R2adjz Save s; 
 
 
 
D. Confirmation experiment 
 
This Thesis Code is made by the author. 
 
clear all; 
close all; 
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clc; 
 
a1 = input('Input optimal solution # of method 1:   '); 
a2 = input('Input optimal solution # of method 2:   '); 
a3 = input('Input optimal solution # of method 3:   '); 
a4 = input('Input optimal solution # of method 4:   '); 
a5 = input('Input optimal solution # of method 5:   '); 
a6 = input('Input optimal solution # of method 6:   '); 
 
[TagforReg, Tag, cvector, dvector, evector]=combarray_confirm(); 
 
Tag_conf = [Tag(1:10000,1:2),Tag(1:10000,6:7)]; 
Tag_conf = [Tag_conf(a1,:);Tag_conf(a2,:);Tag_conf(a3,:);Tag_conf(a4,:);Tag_conf(a5,:); 
Tag_conf(a6,:)]; 
 
c = ceil((cvector(2,1)-cvector(1,1))/4); 
d = ceil((dvector(2,1)-dvector(1,1))/4); 
e = ceil((evector(2,1)-evector(1,1))/4); 
 
new_cvector = [2*c, c, 3*c, 40*c, 2000]'; %Map size 
new_dvector = [2*d, d, 3*d, 40*d, 10]'; %number of enemy 
new_evector = [2*e, e, 3*d, 40*d, 70]'; %number of friend 
cost_coef = [3 1 1 1 2; 2 1 1 1 2; 4 1 1 1 2; 40 1 1 1 2 ; 10 1 1 1 2]; %cost coefficient 
 
for m = 1:size(new_cvector,1) %ROI for Confirmation experiment 
 
    for r = 1:size(Tag_conf,1) %Threshold needed to confirm 
 
        d_table = [Tag_conf(r,1), Tag_conf(r,3); 1-Tag_conf(r,1) 1-Tag_conf(r,3)]; 
        c_table = [Tag_conf(r,2), Tag_conf(r,4) .5; 1-Tag_conf(r,2) 1-Tag_conf(r,4) .5; 0 0 0]; 
        area = zeros(new_cvector(m,1),1); %Map size 
 
        for j=1:new_dvector(m,1) % Enemy 
            area(j,1)=1; 
        end 
        area=sortrows(area); 
 
        for j=1:new_evector(m,1) % Friend 
            area(j,1)=2; 
        end 
 
        cost = cost_coef(m,:)'; 
        output1 = [];       %for result of detection process 
        output2 = [];       %for result of classification process 
        column_d = [3 0];   %for detection 0 means nothing, 3 means something 
        column_c = [1 2 0]; %for classification 1 means ET, 2 means FT 
 
        prob = []; 
        [I,J] = size(area); 
        N = 1000;    
        cum_confusion = zeros(3); 
 
        for n = 1:N 
            confusion = zeros(3); 
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            for i = 1:I 
                for j = 1:J 
                    if area(i,j) ~= 0 
                        prob = d_table(:,1); 
                        [numberchoices,cols] = size(prob); 
 
                        out=zeros(2,1); 
                        out(1,1) = prob(1); 
 
                        for k = 2:numberchoices 
                            out(k,1) = prob(k) + out(k-1,1); %cumulative distribution function 
                        end 
                        check = 0; 
                        index = 1; 
 
                        while check == 0 
                            if out(index,1) >= rand(1) %search for the probability that is large enough 
                                output1(i,j) = column_d(index); 
                                check = 1; 
                            else 
                                index = index + 1; 
                            end 
                        end 
 
                    else 
                        prob = d_table(:,2); 
                        [numberchoices,cols] = size(prob); 
 
                        out=zeros(2,1); 
                        out(1,1) = prob(1); 
 
                        for k = 2:numberchoices 
                            out(k,1) = prob(k) + out(k-1,1); 
                        end 
 
                        check = 0; 
                        index = 1; 
                        while check == 0 
                            if out(index,1) >= rand(1) 
                                output1(i,j) = column_d(index); 
                                check = 1; 
                            else 
                                index = index + 1; 
                            end 
                        end 
                    end 
 
                    if output1(i,j) == 0 
 
                        %confusion matrix for detection 
                        if area(i,j)==0 
                            confusion(3,3) = confusion(3,3) + 1; 
                            output2(i,j) = 0; 
                        end 
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                        if area(i,j)==1 
                            confusion(3,1) = confusion(3,1) + 1; 
                            output2(i,j) = 5; 
                        end 
                        if area(i,j)==2 
                            confusion(3,2) = confusion(3,2) + 1; 
                            output2(i,j) = 55; 
                        end 
 
                    elseif output1(i,j) ~= 0 
                        if area(i,j) == 1 
                            prob = c_table(:,1); 
                            [numberchoices,cols] = size(prob); 
                            gen_prob = rand(1); 
                            out(1,1) = prob(1); 
 
                            for k = 2:numberchoices 
                                out(k,1) = prob(k) + out(k-1,1); 
                            end 
 
                            check = 0; 
                            index = 1; 
                            while check == 0 
                                if out(index,1) >= gen_prob 
                                    output2(i,j) = column_c(index); 
                                    check = 1; 
                                else 
                                    index = index + 1; 
                                end 
                            end 
 
                        elseif area(i,j) == 2 
 
                            prob = c_table(:,2); 
                            [numberchoices,cols] = size(prob); 
                            out(1,1) = prob(1); 
 
                            for k = 2:numberchoices 
                                out(k,1) = prob(k) + out(k-1,1); 
                            end 
 
                            check = 0; 
                            index = 1; 
                            while check == 0 
                                if out(index,1) >= rand(1) 
                                    output2(i,j) = column_c(index); 
                                    check = 1; 
                                else 
                                    index = index + 1; 
                                end 
                            end 
 
                        elseif area(i,j) == 0 
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                            prob = c_table(:,3); 
                            [numberchoices,cols] = size(prob); 
                            out(1,1) = prob(1); 
 
                            for k = 2:numberchoices 
                                out(k,1) = prob(k) + out(k-1,1); 
                            end 
 
                            check = 0; 
                            index = 1; 
                            while check == 0 
                                if out(index,1) >= rand(1) 
                                    output2(i,j) = column_c(index); 
                                    check = 1; 
                                else 
                                    index = index + 1; 
                                end 
                            end 
                        end 
 
                        %confusion matrix for classification 
                        if output2(i,j) == 1 
                            if area(i,j) == 1 
                                confusion(1,1) = confusion(1,1) + 1; 
                            elseif area(i,j) == 2 
                                confusion(1,2) = confusion(1,2) + 1; 
                            elseif area(i,j) == 0 
                                confusion(1,3) = confusion(1,3) + 1; 
                            end 
                        elseif output2(i,j) == 2 
                            if area(i,j) == 1 
                                confusion(2,1) = confusion(2,1) + 1; 
                            elseif area(i,j) == 2 
                                confusion(2,2) = confusion(2,2) + 1; 
                            elseif area(i,j) == 0 
                                confusion(2,3) = confusion(2,3) + 1; 
                            end 
                        end 
                    end 
                end 
            end 
            cum_confusion = cum_confusion + confusion; 
        end 
        CM = cum_confusion / N; 
 
        TPR(r,m) = CM(1,1)/sum(CM(:,1)); % vertical analysis P("E"|E) 
        E1(r,m) = CM(1,2)/sum(CM(1,:)); % horizontal analysis P(F|"E") 
        E2(r,m) = CM(2,1)/sum(CM(2,:)); % horizontal analysis P(E|"F") 
        E3(r,m) = sum(CM(1:2,3))/sum(sum(CM(1:2,:))); % horizontal analysis P(C|"E" or "F") 
        E4(r,m) = sum(CM(3,1:2))/sum(CM(3,:)); % horizontal analysis P(E or F | "C") 
 
        Cost(r,m) = cost(1,1)*CM(2,1)+cost(2,1)*CM(1,2)+cost(3,1)*(CM(1,3)+CM(2,3)) 

+ cost(4,1)*(CM(3,1)+CM(3,2))-cost(5,1)*TPR_r(r,1); 
        Accuracy(r,m) = CM(1,1)/sum(sum(CM)) + CM(2,2)/sum(sum(CM)) + CM(3,3)/sum(sum(CM)); 
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    end 
end 
 
 
 
E. Radial Basis Functions – Create ROC curves 
 
% This Thesis Code is provided by Todd Paciencia [16], after that... 
% Capt Taeho Kim modified for his analysis. 
 

function[newpts,data]=createsurrogate(regtype,X1,X2,kerneltype,polytype,numnewpts) 
 

%polytypes are regpoly0, regpoly1, regpoly2, regpoly2reduced, regpoly3, 
%regpoly3reduced 
 
dvmatrix=[]; 
dvmatrix(1)=min(X1); %General surrogate 
dvmatrix(2)=max(X2); 
 
if strcmp(regtype,'rbf')==1 
    %kernel types: bi-harmonic, tri-harmonic, multiquadric, invmultiquadric, thinplatespline, gaussian 
    rbfmodel=buildRBF(X1,X2,kerneltype,polytype);  
    newpts=genpts(numnewpts,1,X1); 
        for i=1:size(newpts,1) 
        fx(i)=evalRBF(newpts(i,:)',rbfmodel);  %input is col 
        end 
        data=fx; 
       
elseif strcmp(regtype,'nw')==1 
      %Just set hmin,hmax 
    hmin=0.1; %A lot of curvature to get to points 
    hmax=50; %Assuming not all responses are same, was 3 
    h=mean(hmin,hmax); 
    %kernel types: gaussian, uniform,triangle,epanechnikov,quartic,triweight,cosinus 
    nwmodel=buildNW(X1,X2,kerneltype,h,hmin,hmax);  
%nwmodel.sigma 
     newpts=genpts(numnewpts,1,X1); 
       for i=1:size(newpts,1) 
        fx(i)=evalNW(newpts(i,:)',nwmodel);  
            if fx(i)==1/eps 
                fx(i)=NaN; 
            end 
        end 
       data=fx; 
       
elseif strcmp(regtype,'dace')==1 
    %kerneltype is really corr type 
    [s1,s2]=size(X1); 
    thetaint=10*ones(1,s2); 
    [upb,lob,initialtheta] = thetabds(X1,X2,polytype,kerneltype,thetaint,0); 
    [dmodel,perf]=dacefit(X1,X2,polytype,kerneltype,initialtheta,lob,upb); 
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   %dmodel.theta %theta vector 
    %Corr fn types (kerneltype): corrgauss, corrcubic, correxp, correxpg, corrlin, 
    %corrspherical, corrspline 
   newpts=genpts(numnewpts,1,X1); 
        for i=1:size(newpts,1) 
        fx(i)=predictor(newpts(i,:),dmodel);  
        end 
        data=fx; 
end 
 
 
 

function rbfmodel = buildRBF(S,Y,typeKernel,poly) 
 

%BUILDRBF  Build a surrogate function based on Radial Basis Functions 
 
%******************************************************************************* 
% buildRBF: Builds a surrogate based on radial basis functions. 
% ------------------------------------------------------------------------------ 
% VARIABLES: 
%   S           = matrix of data sites, stored row-wise 
%   Y           = column vector of responses, each corresponding to a data site 
%   typeKernel  = string indicating the type of kernel used in the RBF 
%   rbfmodel    = structure of parameters that define the RBF estimator 
%     .kernel   =   type of kernel used in the RBF estimator 
%     .S        =   matrix of data sites 
%     .coeff    =   vector of polynomial coefficients 
%   nSites      = number of data sites 
%   n           = number of variables 
%   r           = matrix of distances between data sites 
%   A           = system matrix 
%******************************************************************************* 
[nSites, n] = size(S); 
r = zeros(nSites,nSites); 
for i = 1:nSites 
    for j = 1:i-1 
        r(i,j) = norm(S(i,:) - S(j,:)); 
    end 
    r(1:i-1,i) = r(i,1:i-1); 
end 
%Added 
if strcmp(typeKernel,'multiquadric') || strcmp(typeKernel,'invmultiquadratic') || 
strcmp(typeKernel,'gaussian') ==1 
    c = mean(mean(r)); %Avg dist between centers 
    rbfmodel.c = c; 
else 
    %Not used, could be anything 
    c=1; 
    rbfmodel.c = 1; 
end 
%Note, you must use either x2fx or regpoly in both build and eval, o.w. 
%coeffs change order 
%Also, regpoly1 is present, skips the if block and leaves S alone 
check=0; 
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if strcmp(poly,'regpoly2')==1 
    S_orig = S; 
    S = x2fx(S,'quadratic'); 
    S(:,1)=[]; %get rid of constant term, is added later 
    n=size(S,2); 
    check=1; 
elseif strcmp(poly,'regpoly2reduced')==1 
    S_orig = S; 
    S = x2fx(S,'purequadratic'); 
    S(:,1)=[]; %get rid of constant term, is added later 
    n=size(S,2); 
    check=1; 
elseif strcmp(poly,'regpoly3')==1 
    S_orig = S; 
    S = regpoly3(S); 
    S(:,1)=[]; %get rid of constant term, is added later 
    n=size(S,2); 
    check=1; 
elseif strcmp(poly,'regpoly3reduced')==1 
    S_orig = S; 
    S = regpoly3reduced(S); 
    S(:,1)=[]; %get rid of constant term, is added later 
    n=size(S,2); 
    check=1; 
elseif strcmp(poly,'regpoly0')==1 
    S_orig = S; 
    S=[]; 
    n=0; 
    check=1; 
end 
 
%---- 
A = [kernelRBF(typeKernel, r, c), ones(nSites,1), S; 
    [ones(nSites,1), S]',      zeros(n+1,n+1)]; 
%************************************************************************** 
%REPAIRING ILL-CONDITIONED MATRIX USING SINGULAR VALUE DECOMPOSITION IF 
%REPAIR IS NEEDED, ELSE COEFFICIENTS ARE COMPUTED VIA LU FACTORIZATION 
%************************************************************************** 
if condest(A)>=1/eps%1e15 
    disp('Ill-conditioned, repairing') 
    [U,S2,V] = svd(A); 
    s = diag(S2); 
    e = zeros(length(s),1); 
    ind = s/max(abs(s)) >= eps;%1e-8; 
    e(ind) = 1./s(ind); 
 
    E = U*diag(e)*V'; 
    rbfmodel.coeff  = E * [Y(:); zeros(n+1,1)]; 
else 
    rbfmodel.coeff  = A \ [Y(:); zeros(n+1,1)]; 
end 
%************************************************************************** 
%END SVD IF IT WAS NEEDED, ELSE COEFFICIENTS WERE COMPUTED VIA LU 
%FACTORIZATION 
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%************************************************************************** 
rbfmodel.kernel = typeKernel; 
 
if check==1 
    S=S_orig; 
end 
rbfmodel.poly = poly; 
%------ 
rbfmodel.S      = S; 
 
 
return 
 
 
 

function fx = evalRBF(x,rbfmodel) 
 
%EVALRBF  Evaluate a radial basis function surrogate function at a given point 
 
%******************************************************************************* 
% evalRBF: Evaluates a radial basis function surrogate at a given point. 
% ------------------------------------------------------------------------------ 
% Calls:     kernel 
% VARIABLES: 
%   fx          = RBF value at x 
%   x           = the point to be evaluated 
%   rbfmodel    = structure of all parameters that define the RBF surrogate 
%     .S        =   matrix of data sites 
%     .kernel   =   string indicating the choice of kernel function 
%     .coeff    =   coefficients that define the RBF 
%   nSites      = number of data sites 
%   n           = number of variables 
%   r           = vector of distances from x to data sites 
%******************************************************************************* 
[nSites,n] = size(rbfmodel.S); 
r = zeros(nSites,1); 
for j = 1:nSites 
    r(j) = norm(x - rbfmodel.S(j,:)'); 
end 
%Added 
if strcmp(rbfmodel.poly,'regpoly2')==1 
    x=x2fx(x','quadratic'); 
    x=x'; 
    x(1,:)=[];%Get rid of constant, taken care of later 
elseif strcmp(rbfmodel.poly,'regpoly2reduced')==1 
    x=x2fx(x','purequadratic'); 
    x=x'; 
    x(1,:)=[];%Get rid of constant, taken care of later 
elseif strcmp(rbfmodel.poly,'regpoly3')==1 
    x=regpoly3(x'); 
    x=x'; 
    x(1,:)=[];%Get rid of constant, taken care of later 
elseif strcmp(rbfmodel.poly,'regpoly3reduced')==1 
    x=regpoly3reduced(x'); 
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    x=x'; 
    x(1,:)=[];%Get rid of constant, taken care of later 
elseif strcmp(rbfmodel.poly,'regpoly0')==1 
    x=[]; %Just a constant added to RBFs 
end 
%-------- 
y  = [kernelRBF(rbfmodel.kernel,r, rbfmodel.c); 1; x(:)]; 
fx = rbfmodel.coeff'*y; 
if ~isfinite(fx) 
    fx = 1/eps; 
end 
return 
 
 
 

function [chromosomes] = genpts(pop,numdv,X) 
 
%Each chromosome has set of dv values 
 
mindv=min(X); 
maxdv=max(X); 
 
%Initialize chromosomes using range in dv space 
for i=1:pop 
 
    for j=1:numdv 
        chromosomes(i,j)=mindv(j)+(maxdv(j)-mindv(j))*rand(1); 
    end 
 
end 
 
 
 

function K = kernelRBF(typeKernel,x, c) 
 
%KERNEL  Evaluate the kernel of an RBF estimator at a given point. 
 
% ------------------------------------------------------------------------------ 
%  Called by: evalRBF 
%  VARIABLES: 
%    typeKernal = type of kernel used in the Nadaraya-Watson estimator 
%    x          = point to be evaluated (vectors allowed, scalars preferred) 
%    K          = kernel value at the point x 
%******************************************************************************* 
switch lower(typeKernel) 
    case 'bi-harmonic' 
        K = x; 
        %Added 
    case 'tri-harmonic' 
        for i=1:size(x,1) %row 
            for j=1:size(x,2) %col 
                K(i,j) = x(i,j)^3; 
            end 
        end 

104 



 

    case 'multiquadric' 
        for i=1:size(x,1) %row 
            for j=1:size(x,2) %col 
                K(i,j) = (x(i,j)^2+c^2)^.5; 
            end 
        end 
    case 'invmultiquadric' 
        for i=1:size(x,1) %row 
            for j=1:size(x,2) %col 
                K(i,j)=(x(i,j)^2+c^2)^(-.5); 
            end 
        end 
    case 'thinplatespline' 
        for i=1:size(x,1) %row 
            for j=1:size(x,2) %col 
                if x(i,j)==0 
                    K(i,j)=0; %otherwise have log of 0 
                else 
                    K(i,j) = x(i,j)^2*log(x(i,j)); 
                end 
            end 
        end 
    case 'gaussian' 
        for i=1:size(x,1) %row 
            for j=1:size(x,2) %col 
                K(i,j)=exp(-c*x(i,j)^2); 
            end 
        end 
    otherwise 
        error('Invalid kernel type used in Radial Basis Function estimator'); 
end 
return 
 
 
 

function  [f, df] = regpoly1(S) 
 

%REGPOLY1  First order polynomial regression function 
 
% Call:    f = regpoly1(S) 
%          [f, df] = regpoly1(S) 
% 
% S : m*n matrix with design sites 
% f = [1  s] 
% df : Jacobian at the first point (first row in S)  
 
% hbn@imm.dtu.dk   
% Last update April 12, 2002 
 
[m n] = size(S); 
f = [ones(m,1)  S]; 
if  nargout > 1 
  df = [zeros(n,1) eye(n)]; 
end 
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function  [f, df] = regpoly2(S) 
 
%REGPOLY2  Second order polynomial regression function 
 
% Call:    f = regpoly2(S) 
%          [f, df] = regpoly2(S) 
% 
% S : m*n matrix with design sites 
% f =  [1 S S(:,1)*S S(:,2)S(:,2:n) ... S(:,n)^2] 
% df : Jacobian at the first point (first row in S)  
 
% hbn@imm.dtu.dk   
% Last update September 4, 2002 
 
[m n] = size(S); 
nn = (n+1)*(n+2)/2;  % Number of columns in f   
% Compute  f 
f = [ones(m,1) S zeros(m,nn-n-1)]; 
j = n+1;   q = n; 
for  k = 1 : n 
  f(:,j+(1:q)) = repmat(S(:,k),1,q) .* S(:,k:n); 
  j = j+q;   q = q-1; 
end 
 
if  nargout > 1 
  df = [zeros(n,1)  eye(n)  zeros(n,nn-n-1)]; 
  j = n+1;   q = n;  
  for  k = 1 : n 
    df(k,j+(1:q)) = [2*S(1,k) S(1,k+1:n)]; 
    for i = 1 : n-k,  df(k+i,j+1+i) = S(1,k); end 
    j = j+q;   q = q-1; 
  end 
end 
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APPENDIX B: ROC THRESHOLD DATA FILE 

 
         

SET1  SET2 
DETECTOR CLASSFIER  DETECTOR CLASSFIER 

FPR__D TPR_D FPR_C TPR_C  FPR__D TPR_D FPR_C TPR_C
0.01 0.1685 0.01 0.0803  0.0005 0.4422 0.0005 0.4082 
0.02 0.3483 0.02 0.166  0.001 0.4932 0.001 0.4592 
0.03 0.524 0.03 0.2542  0.0015 0.5694 0.0015 0.5354 
0.04 0.6816 0.04 0.3431  0.002 0.6098 0.002 0.5758 
0.05 0.8 0.05 0.4311  0.0025 0.644 0.0025 0.61 
0.06 0.8443 0.06 0.5168  0.003 0.674 0.003 0.64 
0.07 0.8656 0.07 0.5987  0.0035 0.684 0.0035 0.65 
0.08 0.8825 0.08 0.6751  0.004 0.704 0.004 0.67 
0.09 0.8996 0.09 0.7435  0.0045 0.714 0.0045 0.68 
0.1 0.917 0.1 0.8  0.005 0.724 0.005 0.69 
0.11 0.9268 0.11 0.8375  0.0055 0.754 0.0055 0.72 
0.12 0.9321 0.12 0.8629  0.006 0.754 0.006 0.72 
0.13 0.9362 0.13 0.8802  0.0065 0.764 0.0065 0.73 
0.14 0.9403 0.14 0.8919  0.007 0.7667 0.007 0.7327 
0.15 0.944 0.15 0.9  0.0075 0.7865 0.0075 0.7525 
0.16 0.948 0.16 0.9067  0.008 0.8261 0.008 0.7921 
0.17 0.9517 0.17 0.9118  0.0085 0.8261 0.0085 0.7921 
0.18 0.9549 0.18 0.9153  0.009 0.8261 0.009 0.7921 
0.19 0.9576 0.19 0.9178  0.0095 0.8379 0.0095 0.8039 
0.2 0.96 0.2 0.92  0.01 0.854 0.01 0.82 
0.21 0.9627 0.21 0.9231  0.0105 0.8673 0.0105 0.8333 
0.22 0.9653 0.22 0.9263  0.011 0.8673 0.011 0.8333 
0.23 0.9676 0.23 0.9292  0.0115 0.8771 0.0115 0.8431 
0.24 0.9695 0.24 0.9317  0.012 0.8981 0.012 0.8641 
0.25 0.971 0.25 0.9339  0.0125 0.8981 0.0125 0.8641 
0.26 0.9722 0.26 0.9356  0.013 0.8994 0.013 0.8654 
0.27 0.9731 0.27 0.937  0.0135 0.909 0.0135 0.875 
0.28 0.9738 0.28 0.9381  0.014 0.9102 0.014 0.8762 
0.29 0.9743 0.29 0.9391  0.0145 0.9292 0.0145 0.8952 
0.3 0.975 0.3 0.94  0.015 0.9307 0.015 0.8967 
0.31 0.9761 0.31 0.9412  0.0155 0.9308 0.0155 0.8972 
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0.32 0.9773 0.32 0.9425  0.016 0.9308 0.016 0.8972 
0.33 0.9786 0.33 0.9437  0.0165 0.9401 0.0165 0.9065 
0.34 0.9798 0.34 0.9448  0.017 0.9495 0.017 0.9159 
0.35 0.9809 0.35 0.9459  0.0175 0.9595 0.0175 0.9259 
0.36 0.9819 0.36 0.9468  0.018 0.9595 0.018 0.9259 
0.37 0.9828 0.37 0.9476  0.0185 0.9595 0.0185 0.9259 
0.38 0.9836 0.38 0.9484  0.019 0.9595 0.019 0.9259 
0.39 0.9843 0.39 0.9492  0.0195 0.9595 0.0195 0.9259 
0.4 0.985 0.4 0.95  0.02 0.9595 0.02 0.9259 
0.41 0.9857 0.41 0.951  0.0205 0.9595 0.0205 0.9259 
0.42 0.9865 0.42 0.952  0.021 0.9595 0.021 0.9259 
0.43 0.9871 0.43 0.9531  0.0215 0.9595 0.0215 0.9259 
0.44 0.9877 0.44 0.9542  0.022 0.9595 0.022 0.9259 
0.45 0.9882 0.45 0.9552  0.0225 0.9694 0.0225 0.9358 
0.46 0.9887 0.46 0.9562  0.023 0.97 0.023 0.9364 
0.47 0.9891 0.47 0.9572  0.0235 0.9795 0.0235 0.9459 
0.48 0.9894 0.48 0.9581  0.024 0.9795 0.024 0.9459 
0.49 0.9897 0.49 0.959  0.0245 0.9795 0.0245 0.9459 
0.5 0.99 0.5 0.96  0.025 0.9795 0.025 0.9459 
0.51 0.9904 0.51 0.961  0.0255 0.9795 0.0255 0.9459 
0.52 0.9908 0.52 0.9621  0.026 0.9795 0.026 0.9459 
0.53 0.9911 0.53 0.9631  0.0265 0.989 0.0265 0.9554 
0.54 0.9915 0.54 0.9641  0.027 0.9891 0.027 0.9558 
0.55 0.9918 0.55 0.9651  0.0275 0.9891 0.0275 0.9558 
0.56 0.9921 0.56 0.9661  0.028 0.9894 0.028 0.9561 
0.57 0.9923 0.57 0.9671  0.0285 0.9894 0.0285 0.9561 
0.58 0.9926 0.58 0.9681  0.029 0.9894 0.029 0.9561 
0.59 0.9928 0.59 0.969  0.0295 0.9894 0.0295 0.9561 
0.6 0.993 0.6 0.97  0.03 0.9894 0.03 0.9561 
0.61 0.9932 0.61 0.971  0.0305 0.9894 0.0305 0.9561 
0.62 0.9935 0.62 0.972  0.031 0.9894 0.031 0.9561 
0.63 0.9937 0.63 0.973  0.0315 0.9894 0.0315 0.9561 
0.64 0.994 0.64 0.974  0.032 0.9894 0.032 0.9561 
0.65 0.9942 0.65 0.975  0.0325 0.9894 0.0325 0.9561 
0.66 0.9944 0.66 0.976  0.033 0.9898 0.033 0.9565 
0.67 0.9945 0.67 0.977  0.0335 0.9898 0.0335 0.9565 
0.68 0.9947 0.68 0.978  0.034 0.9898 0.034 0.9565 
0.69 0.9948 0.69 0.979  0.0345 0.9898 0.0345 0.9565 
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0.7 0.995 0.7 0.98  0.035 0.9898 0.035 0.9565 
0.71 0.9952 0.71 0.9811  0.0355 0.9902 0.0355 0.9569 
0.72 0.9953 0.72 0.9821  0.036 0.9902 0.036 0.9569 
0.73 0.9955 0.73 0.9832  0.0365 0.9902 0.0365 0.9569 
0.74 0.9956 0.74 0.9842  0.037 0.9902 0.037 0.9569 
0.75 0.9958 0.75 0.9853  0.0375 0.9902 0.0375 0.9569 
0.76 0.9959 0.76 0.9863  0.038 0.9906 0.038 0.9573 
0.77 0.9961 0.77 0.9873  0.0385 0.9906 0.0385 0.9573 
0.78 0.9962 0.78 0.9883  0.039 0.9906 0.039 0.9573 
0.79 0.9964 0.79 0.9892  0.0395 0.9994 0.0395 0.9661 
0.8 0.9965 0.8 0.99  0.04 0.9994 0.04 0.9661 
0.81 0.9966 0.81 0.9907  0.0405 0.9997 0.0405 0.9664 
0.82 0.9967 0.82 0.9914  0.041 0.9997 0.041 0.9664 
0.83 0.9969 0.83 0.992  0.0415 0.9997 0.0415 0.9664 
0.84 0.997 0.84 0.9926  0.042 0.9997 0.042 0.9664 
0.85 0.9971 0.85 0.9931  0.0425 0.9997 0.0425 0.9664 
0.86 0.9972 0.86 0.9936  0.043 0.9997 0.043 0.9664 
0.87 0.9972 0.87 0.9941  0.0435 0.9997 0.0435 0.9664 
0.88 0.9973 0.88 0.9945  0.044 0.9997 0.044 0.9664 
0.89 0.9972 0.89 0.9948  0.0445 0.9997 0.0445 0.9664 
0.9 0.997 0.9 0.995  0.045 0.9997 0.045 0.9664 
0.91 0.9965 0.91 0.9949  0.0455 0.9997 0.0455 0.9664 
0.92 0.9958 0.92 0.9948  0.046 1 0.046 0.9667 
0.93 0.9952 0.93 0.9946  0.0465 1 0.0465 0.9667 
0.94 0.9948 0.94 0.9946  0.047 1 0.047 0.9667 
0.95 0.9945 0.95 0.9947  0.0475 1 0.0475 0.9667 
0.96 0.9946 0.96 0.995  0.048 1 0.048 0.9667 
0.97 0.995 0.97 0.9956  0.0485 1 0.0485 0.9667 
0.98 0.996 0.98 0.9965  0.049 1 0.049 0.9667 
0.99 0.9976 0.99 0.998  0.0495 1 0.0495 0.9667 

1 1 1 1   0.05 1 0.05 0.9667 
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